Citation: MO Wen-long, MA Feng-yun, LIU Jing-mei, ZHONG Mei, AISHA·Nulahong. A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature-programmed hydrogenation characterization[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 549-557. shu

A study on the carbonaceous deposition on Ni-Al2O3 catalyst in CO2-CH4 reforming on the basis of temperature-programmed hydrogenation characterization

  • Corresponding author: MO Wen-long, mowenlong@xju.edu.cn
  • Received Date: 18 December 2018
    Revised Date: 17 March 2019

    Fund Project: the Natural Science Foundation of Xinjiang Uyghur Autonomous Region 2018D01C034the University Research Project of Xinjiang Uygur Autonomous Region XJEDU2018Y001The project was supported by the Natural Science Foundation of Xinjiang Uyghur Autonomous Region (2018D01C034) and the University Research Project of Xinjiang Uygur Autonomous Region (XJEDU2018Y001)

Figures(13)

  • Ni-Al2O3 catalyst was prepared by hydrothermal deposition method and used in the reaction of CO2-CH4 reforming. The effect of reaction time, temperature, CO2/CH4 ratio and feed space velocity on the carbonaceous deposition on the Ni-Al2O3 catalyst surface in CO2-CH4 reforming was investigated, on the basis of temperature-programmed hydrogenation (TPH) characterization. The results indicate that the carbonaceous deposition is an important factor for the deactivation of Ni-Al2O3 catalyst in CO2-CH4 reforming. The amount of deposited carbon increases with the prolongation of reaction time; meanwhile, the hydrogenation peak in the TPH profiles shifts towards higher temperature, indicating that the graphitization degree of the deposited carbon also increases with prolonging the reaction time. The reaction temperature and feed space velocity, especially the later one, also have an influence on the carbon deposition. In addition, due to the carbon elimination reaction by CO2 (CO2+C=2CO), the ratio of CO2/CH4 in the feed shows a great influence on the type and amount of carbon deposited on the Ni-Al2O3 catalyst. A low CO2/CH4 ratio may not achieve a significant inhibition on the coke formation; with the increase of CO2/CH4 ratio, the carbon deposition can then be increasingly inhibited; however, a higher CO2/CH4 ratio also means higher cost for CO2 separation and recovery in the product.
  • 加载中
    1. [1]

      MILICH L. The role of methane in global warming:Where might mitigation strategies be focused?[J]. Global Environ Change, 1999,9(3):179-201. doi: 10.1016/S0959-3780(98)00037-5

    2. [2]

      LAOSIRIPOJANA N, ASSABUMRUNGRAT S. Catalytic dry reforming of methane over high surface area ceria[J]. Appl Catal B:Environ, 2005,60(1):107-116.  

    3. [3]

      THERDTHIANWONG S, THERDTHIANWON A, SIANGCHIN C, YONGPRAPAT S. Synthesis gas production from dry reforming of methane over Ni/Al2O3 stabilized by ZrO2[J]. Int J Hydrogen Energy, 2008,33(3):991-999. doi: 10.1016/j.ijhydene.2007.11.029

    4. [4]

      OYAMA S T, HACARLIOGLU P, GU Y F, LEE D. Dry reforming of methane has no future for hydrogen production:Comparison with steam reforming at high pressure in standard and membrane reactors[J]. Int J Hydrogen Energy, 2012,37(13):10444-10450. doi: 10.1016/j.ijhydene.2011.09.149

    5. [5]

      SUN H J, HUANG J, WANG H, ZHANG J G. CO2 reforming of CH4 over xerogel Ni-Ti and Ni-Ti-Al catalysts[J]. Ind Eng Chem Res, 2007,46(13):4444-4450. doi: 10.1021/ie070049e

    6. [6]

      WANG S B, LU G Q. Carbon dioxide reforming of methane to produce synthesis gas over metal-supported catalysts:State of the art[J]. Energy Fuels, 1996,10:896-904. doi: 10.1021/ef950227t

    7. [7]

      KOLESNICHENKO N V, GORYAINOVA T I, BIRYUKOVA E N, YASHINA O V, KHADZHIEV S N. Synthesis of lower olefins from dimethyl ether in the presence of zeolite catalysts modified with rhodium compounds[J]. Pet Chem, 2011,51(1):55-60.  

    8. [8]

      GORYAINOVA T I, BIRYUKOVA E N, KOLESNICHENKO N V, KHADZHIEV S N. Study of magnesium-containing zeolite catalysts for the synthesis of lower olefins from dimethyl ether[J]. Pet Chem, 2011,51(3):169-173.  

    9. [9]

      JIN L J, LI Y, LIN P, HU H Q. CO2 reforming of methane on Ni/γ-Al2O3 catalyst prepared by dielectric barrier discharge hydrogen plasma[J]. Int J Hydrogen Energy, 2014,39(11):5756-5763. doi: 10.1016/j.ijhydene.2014.01.171

    10. [10]

      JABBOUR K, EL HASSAN N, CASALE S, ESTEPHANE J, EL ZAKHEM H. Promotional effect of Ru on the activity and stability of Co/SBA-15 catalysts in dry reforming of methane[J]. Int J Hydrogen Energy, 2014,39(15):7780-7787. doi: 10.1016/j.ijhydene.2014.03.040

    11. [11]

      MOLINA R, PONCELET G. α-alumina-supported nickel catalysts prepared from nickel acetylacetonate:A TPR study[J]. J Catal, 1998,173:257-267. doi: 10.1006/jcat.1997.1931

    12. [12]

      YANG R C, LI X G, WU J S, ZHANG X, ZHANG Z H, CHENG Y F, GUO J T. Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3 catalysts:Surface Ni species-catalytic activity correlation[J]. Appl Catal A:Gen, 2009,368:105-112. doi: 10.1016/j.apcata.2009.08.021

    13. [13]

      SONG K, LU M M, XU S P, CHEN C Q, ZH AN, Y Y, LI D L, AU C, JIANG L L, TOMISHIGE K. Effect of alloy composition on catalytic performance and coke-resistance property of Ni-Cu/Mg(Al)O catalysts for dry reforming of methane[J]. Appl Catal B:Environ, 2018,239:324-333. doi: 10.1016/j.apcatb.2018.08.023

    14. [14]

      STUBL D R, PROPHET H. JANAF Thermachemical Tables, NSRDS-NBS 37, Washington D.C, 1971.

    15. [15]

      GADDALLA A M, SOMMER M E. Carbon dioxide reforming of methane on nickel catalysts[J]. Chem Eng Sci, 1989,44(12):2825-2829. doi: 10.1016/0009-2509(89)85092-4

    16. [16]

      WANG H Y, RUCKENSTEIN E. Carbon dioxide reforming of methane to synthesis gas over supported rhodium catalysts:the effect of support[J]. Appl Catal A:Gen, 2000,204(1):143-152. doi: 10.1016/S0926-860X(00)00547-0

    17. [17]

      CHEN Q J, ZHANG J, PAN B R, KONG W B, CHEN Y Y, ZHANG W L, SUN Y H. Temperature-dependent anti-coking behaviors of highly stable Ni-CaO-ZrO2 nanocomposite catalysts for CO2 reforming of methane[J]. Chem Eng J, 2017,320:63-73. doi: 10.1016/j.cej.2017.03.029

    18. [18]

      MO, MA, LIU, LIU, AISHA·NULAHONG. Preparation of porous Al2O3 by template method and its application in Ni-based catalyst for CH4/CO2 reforming to produce syngas[J]. Int J Hydrogen Energy, 2015,40(46):16147-16158. doi: 10.1016/j.ijhydene.2015.09.149

    19. [19]

      WANG C Z, SUN N N, WEI W, ZHANG Y X. Carbon intermediates during CO2 reforming of methane over Ni-CaO-ZrO2 catalysts:A temperature-programmed surface reaction study[J]. Int J Hydrogen Energy, 2016,41(42):19014-19024. doi: 10.1016/j.ijhydene.2016.08.128

    20. [20]

      BODROV I M, APELBAUM L O. Reaction kinetics of methane and carbon dioxide on a nickel surface[J]. Kinet Catal, 1967,8(2)379.

    21. [21]

      LI D L, XU S P, SONG K, CHEN C Q, ZHAN Y Y, JIANG L L. Hydrotalcite-derived Co/Mg(Al)O as a stable and coke-resistant catalyst for low-temperature carbon dioxide reforming of methane[J]. Appl Catal A:Gen, 2018,552:21-29. doi: 10.1016/j.apcata.2017.12.022

    22. [22]

      DAI C Y, ZHANG S H, ZHANG A F, SONG C S, SHI C, GUO X W. Hollow zeolite encapsulated Ni-Pt bimetals for sintering and coking resistant dry reforming of methane[J]. J Mater Chem A, 2015,3(32):16461-16468. doi: 10.1039/C5TA03565A

    23. [23]

      WANG R, XU H Y, LIU X B, GE Q J, LI W Z. Role of redox couples of Rh0/Rhδ+ and Ce4+/Ce3+ in CH4/CO2 reforming over Rh-CeO2/Al2O3 catalyst[J]. Appl Catal A:Gen, 2006,305(2):204-210. doi: 10.1016/j.apcata.2006.03.021

    24. [24]

      KIM J H, SUH D J, PARK T J, KIM K L. Effect of metal particle size on coking during CO2 reforming of CH4 over Ni-alumina aerogel catalysts[J]. Appl Catal A:Gen, 2000,197(2):191-200. doi: 10.1016/S0926-860X(99)00487-1

    25. [25]

      SOUZA M M V M, ARANDA D A G, SCHMAL M. Coke formation on Pt/ZrO2/Al2O3 catalysts during CH4 reforming with CO2[J]. Ind Eng Chem Res, 2002,41(18):4681-4685. doi: 10.1021/ie010970a

  • 加载中
    1. [1]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    2. [2]

      Shiyi WANGChaolong CHENXiangjian KONGLansun ZHENGLasheng LONG . Polynuclear lanthanide compound [Ce4Ce6(μ3-O)4(μ4-O)4(acac)14(CH3O)6]·2CH3OH for the hydroboration of amides to amine. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 88-96. doi: 10.11862/CJIC.20240342

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    5. [5]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    6. [6]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    7. [7]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    8. [8]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    9. [9]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    10. [10]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    11. [11]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    12. [12]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    13. [13]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    14. [14]

      Hui LiYanxing QiJia ChenJuanjuan WangMin YangHongdeng Qiu . Synthesis of amine-pillar[5]arene porous adsorbent for adsorption of CO2 and selectivity over N2 and CH4. Chinese Chemical Letters, 2024, 35(11): 109659-. doi: 10.1016/j.cclet.2024.109659

    15. [15]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    16. [16]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    17. [17]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    18. [18]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    19. [19]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(8)
  • Abstract views(948)
  • HTML views(142)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return