Effect of hydrothermal treatment on Na and Ca migration behavior during pyrolysis of Baishihu coal
- Corresponding author: ZHU Chuan, zhuchuan@bricc.cn
Citation:
ZHU Chuan, ZHONG Jin-long, QU Si-jian, GUO Hao, XIE Qiang, WANG Yue. Effect of hydrothermal treatment on Na and Ca migration behavior during pyrolysis of Baishihu coal[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(11): 1305-1314.
ZHANG Shou-yu, CHEN Chuan, SHI Da-zhong, LÜ Jun-fu, WANG Jian, GUO Xi, DONG Ai-xia, XIONG Shao-wu. Situation of combustion utilization of high sodium coal[J]. Proc CSEE, 2013,33(5):1-12.
ZHOU H, ZHOU B, ZHANG H, LI L. Behavior of fouling deposits formed on a probe with different surface temperatures[J]. Energy Fuels, 2014,28:7701-7711. doi: 10.1021/ef502141x
YANG Tao, LI Wen-guang, WU Sha, ZHANG Lan, WANG Xue-bin, TAN Hou-zhang. Study on fouling mechanism in a boiler burning Xinjiang coal with high content of calcium and sodium[J]. J Fuel Chem Technol, 2015, 43(11):1320-1326.
GAO Q, LI S, YUAN Y, ZHANG Y, YAO Q. Ultrafine particulate matter formation in the early stage of pulverized coal combustion of high-sodium lignite[J]. Fuel, 2015,158:224-231. doi: 10.1016/j.fuel.2015.05.028
ILYUSHECHKIN A Y, ROBERTS D. Slagging behaviour of Australian brown coals and implications for their use in gasification technologies[J]. Fuel Process Technol, 2016,147:47-56. doi: 10.1016/j.fuproc.2015.10.028
ZHANG L, TAN H, YANG T, MIKULČIĆ H, DUIĆ N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051
ZHAO Y, HU H, JIN L, HE X, WU B. Pyrolysis behavior of vitrinite and inertinite from Chinese Pingshuo coal by TG-MS and in a fixed bed reactor[J]. Fuel Process Technol, 2011,92:780-786. doi: 10.1016/j.fuproc.2010.09.005
ZHU Chuan, QU Si-jian, ZHANG Ning-ning, SHAO Xun, CAI Zhi-dan, ZHANG Yu-hong, WANG Yue, XIE Qiang. Pyrolysis characteristics of Xinjiang Baishihuvitrinite-rich coal with high alkali content[J]. J China Coal Soc, 2017,42(10):2725-2732.
GONG Zhi-jian. Research progress of lignite hydrothermal upgrading technology[J]. Clean Coal Technol, 2015,21(1):41-44+49.
XIANG F, HE Y, KUMAR S, WANG Z, LIU L, HUANG Z, LIU J, CEN K. Influence of hydrothermal dewatering on trace element transfer in Yimincoal[J]. Appl Therm Eng, 2017,117:675-681. doi: 10.1016/j.applthermaleng.2016.12.100
ZHAO Bing, WANG Jia-rui, CHEN Fan-min, WANG Xiao-yue, LI Xiao-jiang. Hydrothermal treatment to remove sodium from highsodium coal anditsinfluence on combustion characteristics[J]. J Fuel Chem Technol, 2014,42(12):1416-1422. doi: 10.3969/j.issn.0253-2409.2014.12.002
LI G Y, DING J X, ZHANG H, HOU C X, WANG F, LI Y Y, LIANG Y H. ReaxFF simulations of hydrothermal treatment of lignite and its impaction chemical structures[J]. Fuel, 2015,154:243-251. doi: 10.1016/j.fuel.2015.03.082
ZHANG D, LIU P, LU X, WANG L, PAN T. Upgrading of low rank coal by hydrothermal treatment:Coal tar yield during pyrolysis[J]. Fuel Process Technol, 2016,141:117-122. doi: 10.1016/j.fuproc.2015.06.037
LI C Z. Advances in the Victorian Brown Coal[M].YU Jiang-long, CHANG Li-ping translate. Beijing: Chemical Technology Press, 2009.
HAYASHI J, MORI T, AMAMOTO S, KUSAKABE A K, MOROOKA S. Flash pyrolysis of brown coal modified by alcohol-vapor explosion treatment[J]. Energy Fuels, 1996,10(5):1099-1107. doi: 10.1021/ef950118e
YANG Yan-mei, ZHANG Yang, ZHANG Hai, WU Yu-xin, LIU Qing, LÜ Jun-fu. Release characteristics of Na/Ca in Zhundong coal under inert atmosphere[J]. J Fuel Chem Technol, 2018,46(4):385-390. doi: 10.3969/j.issn.0253-2409.2018.04.001
LUO An-qi, ZHU Ping, ZHANG Jian-shu, QU Xuan, ZHANG Rong, BI Ji-cheng, ZHANG Jin-li. Effect of atmosphere on sodium migration during conversion of high sodium coals[J]. J Fuel Chem Technol, 2018,46(5):513-520. doi: 10.3969/j.issn.0253-2409.2018.05.001
DOU Bin-lin, LU Jun, SHEN Wen-qin, GAO Jin-sheng, SHA Xing-zhong. Removal of HCl and Alkali Metal Vapor in High-temperature Coal Gas[J]. J East China Uni Sci Technol, 2001,3:273-276. doi: 10.3969/j.issn.1006-3080.2001.03.014
WANG Wen-hui, JIA Bao-yu, YAO Hong, LI Xian. An investigation of sodium transformation in Zhundong coal during pyrolysis[J]. J Eng Thermophysics, 2015,36(12):2733-2737.
SONG Wei-jian, SONG Guo-liang, ZHANG Hai-xia, FAN Jin-long, LÜ Qing-gang. Experimental study on alkali metal transformation during high-sodium Zhundong coal pyrolysis[J]. J Fuel Chem Technol, 2015,43(1):16-21. doi: 10.3969/j.issn.0253-2409.2015.01.003
WANG Z, LIU Y, WHIDDON R, WAN K, HE Y, XIA J, CEN K. Measurement of atomic sodium release during pyrolysis and combustion of sodium-enriched Zhundong coal pellet[J]. Combust Flame, 2017,176:429-438. doi: 10.1016/j.combustflame.2016.10.020
QIU Peng-hua, ZHAO Yan, CHEN Xi-ye, XU Jian-jian, DU Ya-wen, FANG Lai-xi, SUN Shao-zeng. Effects of alkali and alkaline earth metallic species on pyrolysis characteristics and kinetics of Zhundongcoal[J]. J Fuel Chem Technol, 2014,42(10):1178-1189. doi: 10.3969/j.issn.0253-2409.2014.10.005
LIU Yan-quan, CHEN Le-ming, JI Jie-qiang, ZHANG Wei-guo, WANG Qin-hui, ZHOU Qi, NIE Li. Distribution characteristics of alkali emission between gas and solid phase during Zhundong coal combustion[J]. J Fuel Chem Technol, 2016,44(3):314-320. doi: 10.3969/j.issn.0253-2409.2016.03.008
YANG Y, WU Y, ZHANG H, ZHANG M, LIU Q, YANG H, LU J. Improved sequential extraction method for determination of alkali andalkaline earth metals in Zhundongcoals[J]. Fuel, 2016,181:951-957. doi: 10.1016/j.fuel.2016.05.014
WU J H, WANG J, LIU J Z, YANG Y M, CHENG J, WANG Z H, ZHOU J H. Moisture removal mechanism of low-rank coal by hydrothermal dewatering:Physicochemical property analysis and DFT calculation[J]. Fuel, 2017,187:242-249.
WU J H, WANG J, LIU J Z, YANG Y M, CHENG J, WANG Z H. Moisture removal mechanism of low-rank coal by hydrothermal dewatering:Physicochemical property analysis and DFT calculation[J]. Fuel, 2017,187:242-249. doi: 10.1016/j.fuel.2016.09.071
LI Xiang, QIN Zhi-hong, BU Liang-hui, YANG Zhuang, SHEN Chen-yang. Structural analysis of functional group and mechanism investigation of caking property of coking coal[J]. J Fuel Chem Technol, 2016,44(4):385-393. doi: 10.3969/j.issn.0253-2409.2016.04.001
GE L C, ZHANG Y W, XU C, WANG Z H, ZHOU J H, CEN K F. Influence of the hydrothermal dewatering on the combustion characteristics of Chinese low-rank coals[J]. Appl Therm Eng, 2015,90:174-181. doi: 10.1016/j.applthermaleng.2015.07.015
LIU P, LE J, ZHANG D, WANG S, PAN T. Free radical reaction mechanism on improving tar yield and quality derived from lignite after hydrothermal treatment[J]. Fuel, 2017,207:244-252. doi: 10.1016/j.fuel.2017.06.081
QUYN D M, WU H, BHATTACHARYA S P, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅱ. Effects of chemical form and valence[J]. Fuel, 2002,81(2):151-158. doi: 10.1016/S0016-2361(01)00128-4
GB/T 1574, Stand test method for major and minor elements in coal ash[S].
WU X, ZHANG Z, CHEN Y, ZHOU T, FAN J, PIAO G, KOBAYASHI N, MORI S, YOSHINORI I. Main mineral melting behavior and mineral reaction mechanism at molecular level of blended coal ash under gasification condition[J]. Fuel Proces Technol, 2010,91:1591-1600. doi: 10.1016/j.fuproc.2010.06.007
FAN Jian-yong, ZHOU Yong-gang, LI Pei, KONG Yan-li, WANG Bin-hui, ZHAO Hong. Research on Zhundong coal's ash melting temperature characterizing its slagging characteristics[J]. J China Coal Soc, 2013,38(S2):478-482.
SONG Wei-jian, SONG Guo-liang, QI Xiao-bin, LÜ Qing-gang. Effect of pretreatment methods on the determination of alkali metal content in high alkali metal Zhundong coal[J]. J Fuel Chem Technol, 2016,44(2):162-167. doi: 10.3969/j.issn.0253-2409.2016.02.005
LIU Z, GUO X, SHI LEI, HE W, WU J, LIU Q, LIU J. Reaction of volatiles-A crucial step in pyrolysis of coals[J]. Fuel, 2015,154:361-369. doi: 10.1016/j.fuel.2015.04.006
ROBERTS M J, EVERSON R C, WJPNEOMAGUS H, OKOLO G N, VAN NIEKERK D, MATHEWS J P. The characterisation of slow-heated inertinite-and vitrinite-rich coals from the South African coalfields[J]. Fuel, 2015,158:591-601. doi: 10.1016/j.fuel.2015.06.006
LU K M, LEE W J, CHEN W H, LIN T C. Thermogravimetric analysis and kinetics of co-pyrolysis of raw/torrefied wood and coal blends[J]. Appl Energy, 2013,105:57-65. doi: 10.1016/j.apenergy.2012.12.050
Limei CHEN , Mengfei ZHAO , Lin CHEN , Ding LI , Wei LI , Weiye HAN , Hongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312
Xinyu Zhu , Meili Pang . Application of Functional Group Addition Strategy in Organic Synthesis. University Chemistry, 2024, 39(3): 218-230. doi: 10.3866/PKU.DXHX202308106
Yuena Yang , Xufang Hu , Yushan Liu , Yaya Kuang , Jian Ling , Qiue Cao , Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125
Zhaoxuan ZHU , Lixin WANG , Xiaoning TANG , Long LI , Yan SHI , Jiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368
Danqing Wu , Jiajun Liu , Tianyu Li , Dazhen Xu , Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Zhuo WANG , Junshan ZHANG , Shaoyan YANG , Lingyan ZHOU , Yedi LI , Yuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067
Yang Lv , Yingping Jia , Yanhua Li , Hexiang Zhong , Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059
Kun Xu , Xinxin Song , Zhilei Yin , Jian Yang , Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003
Kai CHEN , Fengshun WU , Shun XIAO , Jinbao ZHANG , Lihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350
Tengjiao Wang , Tian Cheng , Rongjun Liu , Zeyi Wang , Yuxuan Qiao , An Wang , Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Qiang Zhou , Pingping Zhu , Wei Shao , Wanqun Hu , Xuan Lei , Haiyang Yang . Innovative Experimental Teaching Design for 3D Printing High-Strength Hydrogel Experiments. University Chemistry, 2024, 39(6): 264-270. doi: 10.3866/PKU.DXHX202310064
Ji-Quan Liu , Huilin Guo , Ying Yang , Xiaohui Guo . Calculation and Discussion of Electrode Potentials in Redox Reactions of Water. University Chemistry, 2024, 39(8): 351-358. doi: 10.3866/PKU.DXHX202401031
Qingyang Cui , Feng Yu , Zirun Wang , Bangkun Jin , Wanqun Hu , Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046
Junqing WEN , Ruoqi WANG , Jianmin ZHANG . Regulation of photocatalytic hydrogen production performance in GaN/ZnO heterojunction through doping with Li and Au. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 923-938. doi: 10.11862/CJIC.20240243
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
Qingqing SHEN , Xiangbowen DU , Kaicheng QIAN , Zhikang JIN , Zheng FANG , Tong WEI , Renhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028
1: heating furnace; 2: stirring paddles; 3: thermocouple; 4: water cooled tube; 5: safety valve; 6: pressure gauge; 7: blender
1: mass flowmeter; 2: heating furnace; 3: reactor; 4: thermocouple; 5: conical flask; 6: ice bath; 7: washing bottle; 8: flowmeter; 9: dry pipe; 10: air bags