Citation: LIU Bin, LIU Lei, CHAI Yong-ming, ZHAO Jin-chong, LIU Chen-guang. Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(4): 441-450. shu

Essential role of promoter Co on the MoS2 catalyst in selective hydrodesulfurization of FCC gasoline

  • Corresponding author: LIU Bin, liubin@upc.edu.cn
  • Received Date: 21 November 2017
    Revised Date: 26 February 2018

    Fund Project: the Fundamental Research Funds for the Central Universities 17CX02061the Qingdao Applied Basic Research Project 17-1-1-73-jchthe National Natural Science Foundation of China 21776314the Shandong Provincial Natural Science Foundation of China ZR2016BL22the State Key Laboratory of Heavy Oil Processing SLKZZ-2017005the National Key Research and Development Program of China 2017YFB0306600The project was supported by the National Natural Science Foundation of China (U1662119, 21776314), the National Key Research and Development Program of China (2017YFB0306600), the Shandong Provincial Natural Science Foundation of China (ZR2016BL22), the Qingdao Applied Basic Research Project (17-1-1-73-jch), the Fundamental Research Funds for the Central Universities (17CX02061) and the State Key Laboratory of Heavy Oil Processing (SLKZZ-2017005)the National Natural Science Foundation of China U1662119

Figures(6)

  • The essential role of Co on the MoS2 catalyst in selective hydrodesulfurization (HDS) of FCC gasoline was investigated with ammonium tetrathiomolybdate supported on alumina modified with various amount of Co sulfide. According to the data obtained by XRD, HRTEM, XPS, H2-TPR and Py-FTIR analysis, the Co species could significantly affect the microstructure and composition proportion of the active phase, and thus induced the enormous differences in catalytic properties. The evaluation results demonstrated that the Co atoms tending to form the CoMoS phase as Co/Mo(atomic ratio) < 0.2 could greatly improve the HDS activity, but slightly improve the hydrogenation (HYD) activity of olefins. The spillover hydrogen produced by the formation of Co9S8 phase as 0.2 < Co/Mo(atomic ratio) < 0.6 greatly improved the HDS activity, but showed almost no effect on the HYD of olefins. The excess Co could inevitably form some large size Co9S8 phase as Co/Mo(atomic ratio) > 0.6, which would hinder the mutual contact of the reactants and the active sites, and thus lead to the decrease of the HDS activity and selectivity. The obtained results were useful for developing highly effective hydrotreating catalyst.
  • 加载中
    1. [1]

      SONG C. An overview of new approaches to deep desulfurization for ultra-clean gasoline, diesel fuel and jet fuel[J]. Catal Today, 2003,86(1/4):211-263.  

    2. [2]

      BERHAULT G, ROSA M P D I, METHA A, YÁCAMAN M J, CHIANELLI R R. The single-layered morphology of supported MoS2-based catalysts-The role of the cobalt promoter and its effects in the hydrodesulfurization of dibenzothiophene[J]. Appl Catal A:Gen, 2008,345(1):80-88. doi: 10.1016/j.apcata.2008.04.034

    3. [3]

      ASUA J M, DELMON B. Separation of the kinetic terms in catalytic reactions with varying number of active sites (case of the remote control model)[J]. Appl Catal, 1984,12(2):249-262. doi: 10.1016/S0166-9834(00)80295-X

    4. [4]

      PORTELA L, GRANGE P, DELMON B. XPS and NO adsorption studies on alumina-supported Co-Mo catalysts sulfided by different procedures[J]. J Catal, 1995,156(2):243-254. doi: 10.1006/jcat.1995.1251

    5. [5]

      DELMON B, FROMENT G. Remote control of catalytic sites by spillover species:A chemical reaction engineering approach[J]. Catal Rev, 1996,38(1):69-100. doi: 10.1080/01614949608006454

    6. [6]

      TOPSØE , CLAUSEN B S, TOPSØE N Y, ZEUTHEN P. Progress in the design of hydrotreating catalysts based on fundamental molecular insight[J]. Stud Surf Sci Catal, 1989,53(1):77-102.  

    7. [7]

      TOPSØE H, CLAUSEN B S, CANDIA R, WIVEL C, MØRUP S. In situ Mössbauer emission spectroscopy studies of unsupported and supported sulfided CoMo hydrodesulfurization catalysts:Evidence for and nature of a CoMoS phase[J]. J Catal, 1981,68(2):433-452. doi: 10.1016/0021-9517(81)90114-7

    8. [8]

      TOPSØE N Y, TOPSØE H. Characterization of the structures and active sites in sulfided CoMo/Al2O3 and NiMo/Al2O3 catalysts by NO chemisorption[J]. J Catal, 1983,84(2):386-401. doi: 10.1016/0021-9517(83)90010-6

    9. [9]

      OKAMOTO Y, OCHIAI K, KAWANO M, KUBOTA T. Evaluation of the maximum potential activity of Co-Mo/Al2O3 catalysts for hydrodesulfurization[J]. J Catal, 2004,222(1):143-151. doi: 10.1016/j.jcat.2003.10.024

    10. [10]

      VILLARROEL M, BAEZA P, GRACIA F, EXCALONA N, AVILA P, GIL-LLAMBÍAS F J. Phosphorus effect on Co//Mo and Ni//Mo synergism in hydrodesulphurization catalysts[J]. Appl Catal A:Gen, 2009,364(1/2):75-79.  

    11. [11]

      PIMERZIN A A, ISHUTENKO D I, MOZHAEV A V, KAPUSTIN V M, CHERNYSHEVA E A, MAXIMOVA A V, PIMERZIN A A, NIKULSHIN P A. Comparable investigation of spillover and cobalt promoter effects in CoMoS/CoSx/SiO2 catalysts for selective hydrotreating of model FCC gasoline[J]. Fuel Process Technol, 2017,156(2):98-106.  

    12. [12]

      OJEDA J, ESCALONA N, BAEZA P, ESCUDEY M, GIL-LLAMBÍAS F J. Synergy between Mo/SiO2 and Co/SiO2 beds in HDS:a remote control effect[J]. Chem Commun, 2003,9(13):1608-1609.  

    13. [13]

      INAMURA K, PRINS R. The role of Co in unsupported Co-Mo sulfides in the hydrodesulfurization of thiophene[J]. J Catal, 1994,147(2):515-524. doi: 10.1006/jcat.1994.1168

    14. [14]

      OKAMOTO Y, HIOKA K, ARAKAWA K, FUJIKAWA T, EBIHARA T, KUBOTA T. Effect of sulfidation atmosphere on the hydrodesulfurization activity of SiO2-supported Co-Mo sulfide catalysts:Local structure and intrinsic activity of the active sites[J]. J Catal, 2009,268(1):49-59. doi: 10.1016/j.jcat.2009.08.017

    15. [15]

      ALABI W, ATANDA L, JERMY R, AL-KHATTAF S. Kinetics of toluene alkylation with methanol catalyzed by pure and hybridized HZSM-5 catalysts[J]. Chem Eng J, 2012,195/196:276-288. doi: 10.1016/j.cej.2012.04.100

    16. [16]

      BEZVERKHYY I, AFANASIEV P, LACROIX M. Promotion of highly loaded MoS2/Al2O3 hydrodesulfurization catalysts prepared in aqueous solution[J]. J Catal, 2005,230(1):133-139. doi: 10.1016/j.jcat.2004.12.009

    17. [17]

      AN G, LIU Y, CHAI Y, SHANG H, LIU C. Synthesis, characterization and thermal decomposition mechanism of cetyltrimethyl ammonium tetrathiotungstate[J]. J Nat Gas Chem, 2006,15(2):127-133. doi: 10.1016/S1003-9953(06)60019-4

    18. [18]

      WANG H W, SKELDON P, THOMPSON G E, WOOD G C. Synthesis and characterization of molybdenum disulphide formed from ammonium tetrathiomolybdate[J]. J Mater Sci, 1997,32(2):497-502. doi: 10.1023/A:1018538424373

    19. [19]

      ZHANG F, VASUDEVAN P T. TPD, HYD Studies of unpromoted and Co-promoted molybdenum sulfide catalyst Ex ammonium tetrathiomolybdate[J]. J Catal, 1995,157(2):536-544. doi: 10.1006/jcat.1995.1317

    20. [20]

      LIU B, CHAI Y, LI Y, WANG A, LIU Y, LIU C. Effect of sulfidation atmosphere on the performance of the CoMo/γ-Al2O3 catalysts in hydrodesulfurization of FCC gasoline[J]. Appl Catal A:Gen, 2014,471:70-79. doi: 10.1016/j.apcata.2013.11.017

    21. [21]

      LIU B, LIU L, WANG Z, CHAI Y, LIU H, YIN C, LIU C. Effect of hydrogen spillover in selective hydrodesulfurization of FCC gasoline over the CoMo catalyst[J]. Catal Today, 2017,282:14-221.  

    22. [22]

      LI M, LI H, JIANG F, CHU Y, NIE H. The relation between morphology of (Co)MoS2 phases and selective hydrodesulfurization for CoMo catalysts[J]. Catal Today, 2010,149(1/2):35-39.  

    23. [23]

      NAVA R, MORALES J, ALONSO G, ORNELAS C, PAWELEC B, FIERRO J L G. Influence of the preparation method on the activity of phosphate-containing CoMo/HMS catalysts in deep hydrodesulphurization[J]. Appl Catal A:Gen, 2007,321(1):58-70. doi: 10.1016/j.apcata.2007.01.038

    24. [24]

      YUE L, LI G, ZHANG F, CHEN L, LI X, HUANG X. Size-dependent activity of unsupported Co-Mo sulfide catalysts for the hydrodesulfurization of dibenzothiophene[J]. Appl Catal A:Gen, 2016,512:85-92. doi: 10.1016/j.apcata.2015.12.016

    25. [25]

      YU Q, ZHANG L, GUO R, SUN J, FU W, TANG T, TANG T. Catalytic performance of CoMo catalysts supported on mesoporous ZSM-5 zeolite-alumina composites in the hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. Fuel Process Technol, 2017,159:76-87. doi: 10.1016/j.fuproc.2017.01.023

    26. [26]

      ALATRUP I, CHORKENDORFF I, CANDIA R. A combined X-Ray photoelectron and Mössbauer emission spectroscopy study of the state of cobalt in sulfided, supported, and unsupported Co-Mo catalysts[J]. J Catal, 1982,77(2):397-409. doi: 10.1016/0021-9517(82)90181-6

    27. [27]

      RAMOS M, BERHAULT G, FERRER D A, TORRES B, CHIANELLI R R. HRTEM and molecular modeling of the MoS2-Co9S8 interface:Understanding the promotion effect in bulk HDS catalysts[J]. Catal Sci Technol, 2012,2(1):164-178. doi: 10.1039/C1CY00126D

    28. [28]

      AFANASIEV P. On the interpretation of temperature programmed reduction patterns of transition metals sulphides[J]. Appl Catal A:Gen, 2006,303(1):110-115. doi: 10.1016/j.apcata.2006.02.014

    29. [29]

      YOOSUK B, KIM J H, SONG C, NGAMCHARUSSRIVICHAI C, PRASASSARAKICH P. Highly active MoS2, CoMoS2 and NiMoS2 unsupported catalysts prepared by hydrothermal synthesis for hydrodesulfurization of 4, 6-dimethyldibenzothiophene[J]. Catal Today, 2008,130(1):14-23. doi: 10.1016/j.cattod.2007.07.003

    30. [30]

      MOCHIZUKI T, ITOU H, TOBA M, MIKI Y, YOSHIMURA Y. Effects of acidic properties on the catalytic performance of como sulfide catalysts in selective hydrodesulfurization of gasoline fractions[J]. Energy Fuels, 2008,22(3):1456-1462. doi: 10.1021/ef700644e

    31. [31]

      KALLINIKOS L E, JESS A, PAPAYANNAKOS N G. Kinetic study and H2S effect on refractory DBTs desulfurization in a heavy gasoil[J]. J Catal, 2010,269(1):169-178. doi: 10.1016/j.jcat.2009.11.005

    32. [32]

      BRUNET S, MEY D, PÉROT G, BOUCHY C, DIEHL F. On the hydrodesulfurization of FCC gasoline:A review[J]. Appl Catal A:Gen, 2005,278(2):143-172. doi: 10.1016/j.apcata.2004.10.012

    33. [33]

      HO T C. Hydrodenitrogenation catalysis[J]. Cat Rev Sci Eng, 1988,30:117-160. doi: 10.1080/01614948808078617

    34. [34]

      BESENBACHER F, BRORSON M, CLAUSEN B S, HELVEG S, HINNEMANN B, KIBSGAARD J, LAURITSEN J V, MOSES P G, NØRSKOV J K, TOPSØE H. Recent STM, DFT and HAADF-STEM studies of sulfide-based hydrotreating catalysts:Insight into mechanistic, structural and particle size effects[J]. Catal Today, 2008,130(1):86-96. doi: 10.1016/j.cattod.2007.08.009

    35. [35]

      MOSES P G, HINNEMANN B, TOPSØE H, NØRSKOV J K. The hydrogenation and direct desulfurization reaction pathway in thiophene hydrodesulfurization over MoS2 catalysts at realistic conditions:A density functional study[J]. J Catal, 2007,248(2):188-203. doi: 10.1016/j.jcat.2007.02.028

    36. [36]

      HENSEN E J M, KOOYMAN P J, VAN DER MEER Y, VAN DER KRAAN A M, DE BEER V H J, VAN VEEN J A R, VAN SANTEN R A. The relation between morphology and hydrotreating activity for supported MoS2 particles[J]. J Catal, 2001,199(2):224-235. doi: 10.1006/jcat.2000.3158

    37. [37]

      GONZÁLEZ-CORTÉS S L, XIAO T, COSTA P M F J, FONTAL B, GREEN M L H. Urea-organic matrix method:An alternative approach to prepare CoMoS2/γ-Al2O3 HDS catalyst[J]. Appl Catal A:Gen, 2004,270(1/2):209-222.  

  • 加载中
    1. [1]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    2. [2]

      Bin DongNing YuQiu-Yue WangJing-Ke RenXin-Yu ZhangZhi-Jie ZhangRuo-Yao FanDa-Peng LiuYong-Ming Chai . Double active sites promoting hydrogen evolution activity and stability of CoRuOH/Co2P by rapid hydrolysis. Chinese Chemical Letters, 2024, 35(7): 109221-. doi: 10.1016/j.cclet.2023.109221

    3. [3]

      Xuan LiuQing Li . Tailoring interatomic active sites for highly selective electrocatalytic biomass conversion reaction. Chinese Chemical Letters, 2025, 36(4): 110670-. doi: 10.1016/j.cclet.2024.110670

    4. [4]

      Zhipeng Wan Hao Xu Peng Wu . Selective oxidation using in-situ generated hydrogen peroxide over titanosilicates. Chinese Journal of Structural Chemistry, 2024, 43(6): 100298-100298. doi: 10.1016/j.cjsc.2024.100298

    5. [5]

      Zhaohong ChenMengzhen LiJinfei LanShengqian HuXiaogang Chen . Organic ferroelastic enantiomers with high Tc and large dielectric switching ratio triggered by order-disorder and displacive phase transition. Chinese Chemical Letters, 2024, 35(10): 109548-. doi: 10.1016/j.cclet.2024.109548

    6. [6]

      Weiping XiaoYuhang ChenQin ZhaoDanil BukhvalovCaiqin WangXiaofei Yang . Constructing the synergistic active sites of nickel bicarbonate supported Pt hierarchical nanostructure for efficient hydrogen evolution reaction. Chinese Chemical Letters, 2024, 35(12): 110176-. doi: 10.1016/j.cclet.2024.110176

    7. [7]

      Yufei LiuLiang XiongBingyang GaoQingyun ShiYing WangZhiya HanZhenhua ZhangZhaowei MaLimin WangYong Cheng . MOF-derived Cu based materials as highly active catalysts for improving hydrogen storage performance of Mg-Ni-La-Y alloys. Chinese Chemical Letters, 2024, 35(12): 109932-. doi: 10.1016/j.cclet.2024.109932

    8. [8]

      Xiangyuan Zhao Jinjin Wang Jinzhao Kang Xiaomei Wang Hong Yu Cheng-Feng Du . Ni nanoparticles anchoring on vacuum treated Mo2TiC2Tx MXene for enhanced hydrogen evolution activity. Chinese Journal of Structural Chemistry, 2023, 42(10): 100159-100159. doi: 10.1016/j.cjsc.2023.100159

    9. [9]

      Haibin Yang Duowen Ma Yang Li Qinghe Zhao Feng Pan Shisheng Zheng Zirui Lou . Mo doped Ru-based cluster to promote alkaline hydrogen evolution with ultra-low Ru loading. Chinese Journal of Structural Chemistry, 2023, 42(11): 100031-100031. doi: 10.1016/j.cjsc.2023.100031

    10. [10]

      Jiao LiChenyang ZhangChuhan WuYan LiuXuejian ZhangXiao LiYongtao LiJing SunZhongmin Su . Defined organic-octamolybdate crystalline superstructures derived Mo2C@C as efficient hydrogen evolution electrocatalysts. Chinese Chemical Letters, 2024, 35(6): 108782-. doi: 10.1016/j.cclet.2023.108782

    11. [11]

      Xinyu HouXuelian YuMeng LiuHengxing PengLijuan WuLibing LiaoGuocheng Lv . Ultrafast synthesis of Mo2N with highly dispersed Ru for efficient alkaline hydrogen evolution. Chinese Chemical Letters, 2025, 36(4): 109845-. doi: 10.1016/j.cclet.2024.109845

    12. [12]

      Xingyan LiuChaogang JiaGuangmei JiangChenghua ZhangMingzuo ChenXiaofei ZhaoXiaocheng ZhangMin FuSiqi LiJie WuYiming JiaYouzhou He . Single-atom Pd anchored in the porphyrin-center of ultrathin 2D-MOFs as the active center to enhance photocatalytic hydrogen-evolution and NO-removal. Chinese Chemical Letters, 2024, 35(9): 109455-. doi: 10.1016/j.cclet.2023.109455

    13. [13]

      Li LiFanpeng ChenBohang ZhaoYifu Yu . Understanding of the structural evolution of catalysts and identification of active species during CO2 conversion. Chinese Chemical Letters, 2024, 35(4): 109240-. doi: 10.1016/j.cclet.2023.109240

    14. [14]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    15. [15]

      Zuyou SongYong JiangQiao GouYini MaoYimin JiangWei ShenMing LiRongxing He . Promoting the generation of active sites through "Co-O-Ru" electron transport bridges for efficient water splitting. Chinese Chemical Letters, 2025, 36(4): 109793-. doi: 10.1016/j.cclet.2024.109793

    16. [16]

      Ke Wang Jia Wu Shuyi Zheng Shibin Yin . NiCo Alloy Nanoparticles Anchored on Mesoporous Mo2N Nanosheets as Efficient Catalysts for 5-Hydroxymethylfurfural Electrooxidation and Hydrogen Generation. Chinese Journal of Structural Chemistry, 2023, 42(10): 100104-100104. doi: 10.1016/j.cjsc.2023.100104

    17. [17]

      Xiangyu ChenAihao XuDong WeiFang HuangJunjie MaHuibing HeJing Xu . Atomic cerium-doped CuOx catalysts for efficient electrocatalytic CO2 reduction to CH4. Chinese Chemical Letters, 2025, 36(1): 110175-. doi: 10.1016/j.cclet.2024.110175

    18. [18]

      Hanqing Zhang Xiaoxia Wang Chen Chen Xianfeng Yang Chungli Dong Yucheng Huang Xiaoliang Zhao Dongjiang Yang . Selective CO2-to-formic acid electrochemical conversion by modulating electronic environment of copper phthalocyanine with defective graphene. Chinese Journal of Structural Chemistry, 2023, 42(10): 100089-100089. doi: 10.1016/j.cjsc.2023.100089

    19. [19]

      Tianbo JiaLili WangZhouhao ZhuBaikang ZhuYingtang ZhouGuoxing ZhuMingshan ZhuHengcong Tao . Modulating the degree of O vacancy defects to achieve selective control of electrochemical CO2 reduction products. Chinese Chemical Letters, 2024, 35(5): 108692-. doi: 10.1016/j.cclet.2023.108692

    20. [20]

      Shuqi YuYu YangKeisuke KurodaJian PuRui GuoLi-An Hou . Selective removal of Cr(Ⅵ) using polyvinylpyrrolidone and polyacrylamide co-modified MoS2 composites by adsorption combined with reduction. Chinese Chemical Letters, 2024, 35(6): 109130-. doi: 10.1016/j.cclet.2023.109130

Metrics
  • PDF Downloads(21)
  • Abstract views(655)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return