Citation: Wang Tong, Lv Liang, Wei Xiao. Progress in Ratiometric Fluorescence Probes Based on Quantum Dots[J]. Chemistry, ;2019, 82(10): 893-898, 892. shu

Progress in Ratiometric Fluorescence Probes Based on Quantum Dots

  • Corresponding author: Wei Xiao, chdwx@chd.edu.cn
  • Received Date: 5 May 2019
    Accepted Date: 2 August 2019

Figures(6)

  • Quantum dots (QDs) are nano-luminescent particles with excellent luminescent properties, which have broad application prospects in solar energy utilization and fluorescence detection. Combining QDs with another fluorophore can be used as a ratiometric fluorescence probe to visually detect target substances and improve detection sensitivity. In this paper, the types, preparation methods and application of QDs ratiometric fluorescence probes were reviewed, and the shortcomings were analyzed, so as to provide reference for the development of ratiometric fluorescence probes with excellent performance.
  • 加载中
    1. [1]

      A Valizadeh, H Mikaeili, M Samiei et al. Nanoscale Res. Lett., 2012, 7(1):480. 

    2. [2]

      R Wang, K Q Lu, Z R Tang et al. J. Mater. Chem. A, 2017, 5(8):3717~3734. 

    3. [3]

      A P Alivisatos. Science, 1996, 271(5251):933~937. 

    4. [4]

      W R Algar, K Susumu, J B Delehanty et al. Anal. Chem., 2011, 83(23):8826~8837. 

    5. [5]

      X J Peng, Y K Wu, J L Fan et al. J. Org. Chem., 2005, 70(25):10524~10531. 

    6. [6]

      X H Lu, Y J Zhao, J J Zhang et al. Analyst, 2015, 140(23):7859~7863. 

    7. [7]

      S Y Lim, W Shen, Z Q Gao. Chem. Soc. Rev., 2015, 44(1):362~381. 

    8. [8]

      S Chinnathambi, S Chen, S Ganesan et al. Adv. Health. Mater., 2014, 3(1):10~29. 

    9. [9]

      J L Yao, K Zhang, H J Zhu et al. Anal. Chem., 2013, 85(13):6461~6468. 

    10. [10]

      J L Yu, J Su, J Zhang et al. RSC Adv., 2017, 7(29):17819~17823. 

    11. [11]

      B T Huy, N T Kim Phuong, T T T Nguyen et al. Appl. Spectrosc. Rev., 2017:1~20.

    12. [12]

      S Bieker, R Pfeuffer, T Kiessling et al. Phys. Rev. B, 2015, 91(12):125~301.

    13. [13]

      L Chen, L Sun, J H Zheng et al. New J. Chem., 2017, 41(23):14551~14556. 

    14. [14]

      Q Mu, Y Li, H Xu et al. Talanta, 2014, 119:564~571. 

    15. [15]

      K Wang, J Qian, D Jiang et al. Biosens. Bioelectron., 2015, 65:83~90. 

    16. [16]

      X Y Xu, R Ray, Y Gu et al. J. Am. Chem. Soc., 2004, 126(40):12736~12737. 

    17. [17]

      Y Xu, M Wu, Y Liu et al. Chem. Eur. J., 2013, 19(7):2276~2283. 

    18. [18]

      S Y Lim, W Shen, Z Q Gao. Chem. Soc. Rev., 2015, 44(1):362~381. 

    19. [19]

      H Ding, Y Ji, J S Wei et al. J. Mater. Chem. B, 2017, 5(26):5272~5277. 

    20. [20]

      Y F Wang, A G Hu. J. Mater. Chem. C, 2014, 2(34):6921~6939. 

    21. [21]

      H Y Xu, K N Zhang, Q S Liu et al. Microchim. Acta, 2017, 184(4):1199~1206. 

    22. [22]

      M A F Nejad, M R Hormozi-Nezhad. Anal. Method, 2017, 9(23):3505~3512. 

    23. [23]

      Y S He, C G Pan, H X Cao et al. Sens. Actuat. B, 2018, 265:371~377. 

    24. [24]

      H Chen, Y J Xie, A M Kirillov et al. Chem. Commun., 2015, 51(24):5036~5039. 

    25. [25]

      F K Du, Y H Min, F Zeng et al. Small, 2014, 10(5):964~972. 

    26. [26]

      B B Prasad, A Kumar, R Singh. Biosens. Bioelectron., 2017, 94:1~9. 

    27. [27]

      X L Song, J H Li, S F Xu et al. Talanta, 2012, 99:75~82. 

    28. [28]

      Y Kubo, M Yamamoto, M Ikeda et al. Angew. Chem. Int. Ed., 2010, 42(18):2036~2040.

    29. [29]

      L Zhang, L G Chen. Microchim. Acta, 2018, 185(2):135~144. 

    30. [30]

      W Y Gui, H Wang, Y Liu et al. Sens. Actuat. B, 2018, 03:685~691.

    31. [31]

      M Amjadi, R Jalili. Spectrochim. Acta A, 2017, 191:345~351.

    32. [32]

      M Amjadi, R Jalili. Biosens. Bioelectron., 2017, 96:121~126. 

    33. [33]

      S T Wu, Z Q Duan, F Hao et al. Dyes Pigm., 2017, 137:395~402. 

    34. [34]

      H S Jung, P S Kwon, J W Lee et al. J. Am. Chem. Soc., 2009, 131(5):2008~2012. 

    35. [35]

      A E Albers, B C Dickinson, E W Miller et al. Bioorg. Med. Chem. Lett., 2008, 18(22):5948~5950. 

    36. [36]

      J Tydlitát, S Achelle, J Rodríguez-López et al. Dyes Pigm., 2017, 146:467~478. 

    37. [37]

      L F Chen, X K Tian, C Yang et al. Sens. Actuat. B, 2017, 240:66~75. 

    38. [38]

      H H Li, H J Zhu, M T Sun et al. Langmuir, 2015, 31(31):8667~8671. 

    39. [39]

      X Wang, J Yu, X Wu et al. Biosens. Bioelectron., 2016, 81:438~444. 

    40. [40]

      S F Xu, H Z Lu. Biosens. Bioelectron., 2015, 73:160~166. 

    41. [41]

      X X Zhang, W J Zhang, Y J Li et al. Dyes Pigm., 2017, 140:150~156. 

    42. [42]

      J Shen, L Zhao, G Han. Adv. Drug. Deliv. Rev., 2013, 65(5):744~755. 

    43. [43]

      J Zhou, M X Yu, Y Sun et al. Biomaterials, 2011, 32(4):1148~1156. 

    44. [44]

      Y Xiang, X Y Xu, D F He et al. J. Nanopart. Res., 2011, 13(2):525~531. 

    45. [45]

      Z Q Ye, R Tang, H Wu et al. New. J. Chem., 2014, 38(12):5721~5726. 

    46. [46]

      Y H Song, J Y Chen, D Q Hu et al. Sens. Actuat. B, 2015, 221:586~592. 

    47. [47]

      W Li, H R Zhang, S Chen et al. Biosens. Bioelectron., 2016, 86:706~713. 

  • 加载中
    1. [1]

      Qin Hou Jiayi Hou Aiju Shi Xingliang Xu Yuanhong Zhang Yijing Li Juying Hou Yanfang Wang . Preparation of Cuprous Iodide Coordination Polymer and Fluorescent Detection of Nitrite: A Comprehensive Chemical Design Experiment. University Chemistry, 2024, 39(8): 221-229. doi: 10.3866/PKU.DXHX202312056

    2. [2]

      Chun-Lin Sun Yaole Jiang Yu Chen Rongjing Guo Yongwen Shen Xinping Hui Baoxin Zhang Xiaobo Pan . Construction, Performance Testing, and Practical Applications of a Home-Made Open Fluorescence Spectrometer. University Chemistry, 2024, 39(5): 287-295. doi: 10.3866/PKU.DXHX202311096

    3. [3]

      Yanxin Wang Hongjuan Wang Yuren Shi Yunxia Yang . Application of Python for Visualizing in Structural Chemistry Teaching. University Chemistry, 2024, 39(3): 108-117. doi: 10.3866/PKU.DXHX202306005

    4. [4]

      Ruming Yuan Laiying Zhang Xiaoming Xu Pingping Wu Gang Fu . Application of Mathematica in Visualizing Physical Chemistry Formulas. University Chemistry, 2024, 39(8): 375-382. doi: 10.3866/PKU.DXHX202401030

    5. [5]

      Longping Li Jiali Li Tiange Qu Jiaqing Cai Chuyu Zhang Wenji Guo Qiulian Li Fan Luo . “可视化”助力从茶叶中提取咖啡因实验的关键步——升华. University Chemistry, 2025, 40(8): 272-276. doi: 10.12461/PKU.DXHX202409137

    6. [6]

      Miaomiao He Zhiqing Ge Qiang Zhou Jiaqing He Hong Gong Lingling Li Pingping Zhu Wei Shao . Exploring the Fascinating Realm of Quantum Dots. University Chemistry, 2024, 39(6): 231-237. doi: 10.3866/PKU.DXHX202310040

    7. [7]

      Yu SUXinlian FANYao YINLin WANG . From synthesis to application: Development and prospects of InP quantum dots. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2105-2123. doi: 10.11862/CJIC.20240126

    8. [8]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    9. [9]

      Wenhui Li Changshuo Zhu Xinyu Cui Chenfei Zhao Lina Qiu Yan Li Chuandong Wu Min Yang Yuan Zhuang . Visual Determination of Acid-Base Titration Endpoints Using Smartphone APP-Based Analysis. University Chemistry, 2025, 40(7): 328-335. doi: 10.12461/PKU.DXHX202409062

    10. [10]

      Hongyun Liu Jiarun Li Xinyi Li Zhe Liu Jiaxuan Li Cong Xiao . Course Ideological and Political Design of a Comprehensive Chemistry Experiment: Constructing a Visual Molecular Logic System Based on Intelligent Hydrogel Film Electrodes. University Chemistry, 2024, 39(2): 227-233. doi: 10.3866/PKU.DXHX202309070

    11. [11]

      Yingpeng ZHANGXingxing LIYunshang YANGZhidong TENG . A pyrazole-based turn-off fluorescent probe for visual detection of hydrazine. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1301-1308. doi: 10.11862/CJIC.20250064

    12. [12]

      Jianjun Liu Xue Yang Chi Zhang Xueyu Zhao Zhiwei Zhang Yongmei Chen Qinghong Xu Shao Jin . Preparation and Fluorescence Characterization of CdTe Semiconductor Quantum Dots. University Chemistry, 2024, 39(7): 307-315. doi: 10.3866/PKU.DXHX202311031

    13. [13]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    14. [14]

      Zijuan LIXuan LÜJiaojiao CHENHaiyang ZHAOShuo SUNZhiwu ZHANGJianlong ZHANGYanling MAJie LIZixian FENGJiahui LIU . Synthesis of visual fluorescence emission CdSe nanocrystals based on ligand regulation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 308-320. doi: 10.11862/CJIC.20240138

    15. [15]

      Jiakun BAITing XULu ZHANGJiang PENGYuqiang LIJunhui JIA . A red-emitting fluorescent probe with a large Stokes shift for selective detection of hypochlorous acid. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1095-1104. doi: 10.11862/CJIC.20240002

    16. [16]

      Yi Fan Zhuoqi Jiang Zhipeng Li Xuan Zhou Jingan Lin Laiying Zhang Xu Hou . 偶极诱导液体门控可视化物质检测——化学“101计划”表界面性质应用实验新设计. University Chemistry, 2025, 40(8): 265-271. doi: 10.12461/PKU.DXHX202410061

    17. [17]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    18. [18]

      Huiying Xu Minghui Liang Zhi Zhou Hui Gao Wei Yi . Application of Quantum Chemistry Computation and Visual Analysis in Teaching of Weak Interactions. University Chemistry, 2025, 40(3): 199-205. doi: 10.12461/PKU.DXHX202407011

    19. [19]

      Yuting DUJing YUANPeiyao DENG . Synthesis and application of a fluorescent probe for the detection of reduced glutathione. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1331-1337. doi: 10.11862/CJIC.20240461

    20. [20]

      Wenlong WangWentao HaoLang HeJia QiaoNing LiChaoqiu ChenYong Qin . Bandgap and adsorption engineering of carbon dots/TiO2 S-scheme heterojunctions for enhanced photocatalytic CO2 methanation. Acta Physico-Chimica Sinica, 2025, 41(9): 100116-0. doi: 10.1016/j.actphy.2025.100116

Metrics
  • PDF Downloads(0)
  • Abstract views(1968)
  • HTML views(282)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return