Citation: ZHANG Hong-guang, FENG Li-juan, LI Chun-hu, WANG Liang. Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(7): 871-878. shu

Preparation of graphitic carbon nitride with nitrogen-defects and its photocatalytic performance in the degradation of organic pollutants under visible light

  • Corresponding author: WANG Liang, wangliang_good@163.com
  • Received Date: 2 April 2018
    Revised Date: 12 June 2018

    Fund Project: The project was supported by the State Key Laboratory of Heavy Oil Processing(MCTL contribution NO.137)the State Key Laboratory of Heavy Oil Processing MCTL contribution NO.137

Figures(13)

  • Various graphitic carbon nitride (g-C3N4) materials having nitrogen defects were synthesized by adding NaHCO3 during the thermal polymerization of melamine. The as-prepared g-C3N4 samples were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), nitrogen adsorption-desorption, X-ray photoelectron spectroscopy (XPS), UV-visual diffuse reflectance spectroscopy (UV-vis DRS) and photoluminescence spectroscopy (PL); their photocatalytic activity in the degradation of Rhodamine B (RhB) under visible light irradiation was investigated. The results demonstrated that the unique nitrogen defects in g-C3N4 play an important role in broadening the absorption of visible light and enhancing the separation of electron-hole pairs. The photocatalytic activity of g-C3N4 with nitrogen defects is enhanced greatly; the RhB removal rates over the CNK0.005, CNK0.01, and CNK0.05 photocatalysts in 30 min reach 79.8%, 100.0% and 87.6%, respectively. In contrast, the pristine g-C3N4 free of nitrogen defects only gives an RhB degration rate of 59.8% under the same reaction conditions.
  • 加载中
    1. [1]

      LU J, WANG Y, HUANG J, CAO L Y, LI J Y, HAI G J, BAI Z. One-step synthesis of g-C3N4, hierarchical porous structure nanosheets with dramatic ultraviolet light photocatalytic activity[J]. Mater Sci Eng B, 2016,214:19-25. doi: 10.1016/j.mseb.2016.08.003

    2. [2]

      LIU Y, ZHANG H, LU Y F, WU J, XIN B F. A simple method to prepare g-C3N4/Ag-polypyrrole composites with enhanced visible-light photocatalytic activity[J]. Catal Commun, 2016,87(5):41-44.  

    3. [3]

      IQBALA W, WANG L Z, TAN X J, ZHANG J L. One-step in situ green template mediated porous graphitic carbon nitride for efficient visible light photocatalytic activity[J]. J Environ Chem Eng, 2017,5(4):3500-3507. doi: 10.1016/j.jece.2017.07.011

    4. [4]

      HAO R R, WANG G H, TANG H, SUN L L, XU C, HAN D Y. Template-free preparation of macro/mesoporous g-C3N4/TiO2, heterojunction photocatalysts with enhanced visible light photocatalytic activity[J]. Appl Catal B:Environ, 2016,187(15):47-58.  

    5. [5]

      SHI X W, Fujitsuka M, LOU Z Z, ZHANG P, Majima T. In situ nitrogen-doped hollow-TiO2/g-C3N4 composite photocatalyst with efficient charge separation boosting water reduction under visible light[J]. J Mater Chem, A, 2017,5(20):9671-9681. doi: 10.1039/C7TA01888F

    6. [6]

      CHEN X, CHEN H L, GUAN J, ZHEN J M, SUN Z J, DU P W, LU Y L, YANG S F. A facile mechanochemical route to a covalently bonded graphitic carbon nitride (g-C3N4) and fullerene hybrid toward enhanced visible light photocatalytic hydrogen production[J]. Nanoscale, 2017,9(17):5615-5623. doi: 10.1039/C7NR01237C

    7. [7]

      HE Y M, CAI J, LI T T, WU Y, LIN H J, ZHAO L H, LUO M F. Efficient degradation of RhB over GdVO4/g-C3N4, composites under visible-light irradiation[J]. Chem Eng J, 2013,215/216:721-730. doi: 10.1016/j.cej.2012.11.074

    8. [8]

      LI K, XIE X, ZHANG W D. Photocatalysts based on g-C3N4-encapsulating carbon spheres with high visible light activity for photocatalytic hydrogen evolution[J]. Carbon, 2016,110:356-366. doi: 10.1016/j.carbon.2016.09.039

    9. [9]

      LU D Z, WANG H M, ZHAO X N, Kondamareddy K K, DING J Q, LI C H, FANG P F. Highly efficient visible-light-induced photoactivity of Z-scheme g-C3N4/Ag/MoS2 ternary photocatalysts for organic pollutant degradation and production of hydrogen[J]. Acs Sustainable Chem Eng, 2017,5(11):1436-1445.  

    10. [10]

      LI J Q, YUAN H, ZHU Z F. Photoelectrochemical performance of g-C3N4/Au/BiPO4 Z-scheme composites to improve the mineralization property under solar light[J]. Rsc Adv, 2016,6(74):70563-70572. doi: 10.1039/C6RA13570F

    11. [11]

      YU X, SHI J J, FENG L J, LI C H, WANG L. A three-dimensional BiOBr/RGO heterostructural aerogel with enhanced and selective photocatalytic properties under visible light[J]. Appl Surf Sci, 2017,396:1775-1782. doi: 10.1016/j.apsusc.2016.11.219

    12. [12]

      LIANG S J, XIA Y Z, ZHU S Y, ZHENG S, HE Y H, BI J H, LIU M H, WU L. Au and Pt co-loaded g-C3N4, nanosheets for enhanced photocatalytic hydrogen production under visible light irradiation[J]. Appl Surf Sci, 2015,358:304-312. doi: 10.1016/j.apsusc.2015.08.035

    13. [13]

      TIAN Y M, GE L, WANG K Y, CHAI Y S. Synthesis of novel MoS2/g-C3N4, heterojunction photocatalysts with enhanced hydrogen evolution activity[J]. Mater Charact, 2014,87:70-73. doi: 10.1016/j.matchar.2013.10.020

    14. [14]

      WENG S X, HU J, LU M L, YE X X, PEI Z X, HUANG M L, XIE L Y, LIN S, LIU P. In situ photogenerated defects on surface-complex BiOCl (010) with high visible-light photocatalytic activity:A probe to disclose the charge transfer in BiOCl (010)/surface-complex system[J]. Appl Catal B:Environ, 2015,163:205-213. doi: 10.1016/j.apcatb.2014.07.051

    15. [15]

      HONG Z H, SHEN B, CHEN Y L, LIN B Z, GAO B F. Enhancement of photocatalytic H2 evolution over nitrogen-deficient graphitic carbon nitride[J]. J Mater Chem A, 2013,1(38):11754-11761. doi: 10.1039/c3ta12332d

    16. [16]

      NIU P, YIN L C, YANG Y Q, LIU G, CHENG H M. Increasing the visible light absorption of graphitic carbon nitride (melon) photocatalysts by homogeneous self-modification with nitrogen vacancies[J]. Adv Mater, 2014,26(47):8046-8052. doi: 10.1002/adma.v26.47

    17. [17]

      YU H J, SHI R, ZHAO Y X, BIAN T, ZHAO Y F, ZHOU C, WATERHOUSE G I N, WU L Z, TUNG C H, ZHANG T R. Potocatalysis:Alkali-assisted synthesis of nitrogen deficient graphitic carbon nitride with tunable band structures for efficient visible light-driven hydrogen evolution[J]. Adv Mater, 2017,29(16):5148-5154.  

    18. [18]

      WU M, YAN J M, ZHANG X W, ZHAO M. Synthesis of g-C3N4with heating acetic acid treated melamine and its photocatalytic activity for hydrogen evolution[J]. Appl Surf Sci, 2015,354(2):196-200.  

    19. [19]

      SHANG Y Y, MA Y J, CHEN X, XIONG X, PAN J. Effect of sodium doping on the structure and enhanced photocatalytic hydrogen evolution performance of graphitic carbon nitride[J]. Mol Catal, 2017,433:128-135. doi: 10.1016/j.mcat.2016.12.021

    20. [20]

      CHIDHAMBARAM N, RAVICHANDRAN K. Single step transformation of urea into metal-free g-C3N4 nanoflakes for visible light photocatalytic applications[J]. Mater Lett, 2017,207:44-48. doi: 10.1016/j.matlet.2017.07.040

    21. [21]

      CHEN H, YAO J H, QIU P X, XU C M, JIANG F, WANG X. Facile surfactant assistant synthesis of porous oxygen-doped graphitic carbon nitride nanosheets with enhanced visible light photocatalytic activity[J]. Mater Res Bull, 2017,91:42-48. doi: 10.1016/j.materresbull.2017.02.042

    22. [22]

      ZHENG Y, ZHANG Z S, LI C H, PROULX S. Surface hydroxylation of graphitic carbon nitride:Enhanced visible light photocatalytic activity[J]. Mater Res Bull, 2016,84:46-56. doi: 10.1016/j.materresbull.2016.07.003

    23. [23]

      WANG X J, TIAN X, LI F T, LI Y P, ZHAO J, HAO Y J, LIU Y. Synchronous surface hydroxylation and porous modification of g-C3N4 for enhanced photocatalytic H2 evolution efficiency[J]. Int J Hydrogen Energy, 2016,41(6):3888-3895. doi: 10.1016/j.ijhydene.2016.01.004

    24. [24]

      ZHENG Y, ZHANG Z S, LI C H. Beta-FeOOH-supported graphitic carbon nitride as an efficient visible light photocatalyst[J]. J Mol Catal A:Chem, 2016,423:463-471. doi: 10.1016/j.molcata.2016.07.032

    25. [25]

      MAO M M, CHEN F, ZHENG C C, NING J Q, ZHONG Y J, HU Y. Facile synthesis of porous Bi2O3-BiVO4 p-n heterojunction composite microrods with highly efficient photocatalytic degradation of phenol[J]. J Alloys Compd, 2016,688:1080-1087. doi: 10.1016/j.jallcom.2016.07.128

    26. [26]

      MA X J, LI X R, LI M M, MA X C, YU L, DAI Y. Effect of the structure distortion on the high photocatalytic performance of C60/g-C3N4 composite[J]. Appl Surf Sci, 2017,414:124-130. doi: 10.1016/j.apsusc.2017.04.019

    27. [27]

      SUN Y J, ZHANG W D, XIONG T, ZHAO Z W, DONG F, WANG R Q, HO W K. Growth of BiOBr nanosheets on C3N4 nanosheets to construct two-dimensional nanojunctions with enhanced photoreactivity for NO removal[J]. J Colloid Interface Sci, 2014,418:317-323. doi: 10.1016/j.jcis.2013.12.037

    28. [28]

      LI H, ZHANG T X, PAN C, PU C C, HU Y, HU X Y, LIU E Z, FAN J. Self-assembled Bi2MoO6/TiO2 nanofiber heterojunction film with enhanced photocatalytic activities[J]. Appl Surf Sci, 2017,391:303-310. doi: 10.1016/j.apsusc.2016.06.167

    29. [29]

      HOFFMANN M R, MARTIN S T, CHOI W Y, BAHNEMANN D W. Environmental applications of semiconductor photocatalysis[J]. Chem Rev, 1995,95(1):69-96. doi: 10.1021/cr00033a004

    30. [30]

      DING J, XU W, WAN H, YUAN D S, CHEN C, WANG L, GUAN G F, DAI W L. Nitrogen vacancy engineered graphitic C3N4-based polymers for photocatalytic oxidation of aromatic alcohols to aldehydes[J]. Appl Catal B:Environ, 2018,221:626-634. doi: 10.1016/j.apcatb.2017.09.048

  • 加载中
    1. [1]

      Kai Han Guohui Dong Ishaaq Saeed Tingting Dong Chenyang Xiao . Morphology and photocatalytic tetracycline degradation of g-C3N4 optimized by the coal gangue. Chinese Journal of Structural Chemistry, 2024, 43(2): 100208-100208. doi: 10.1016/j.cjsc.2023.100208

    2. [2]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    3. [3]

      Hualin JiangWenxi YeHuitao ZhenXubiao LuoVyacheslav FominskiLong YePinghua Chen . Novel 3D-on-2D g-C3N4/AgI.x.y heterojunction photocatalyst for simultaneous and stoichiometric production of H2 and H2O2 from water splitting under visible light. Chinese Chemical Letters, 2025, 36(2): 109984-. doi: 10.1016/j.cclet.2024.109984

    4. [4]

      Xuejiao Wang Suiying Dong Kezhen Qi Vadim Popkov Xianglin Xiang . Photocatalytic CO2 Reduction by Modified g-C3N4. Acta Physico-Chimica Sinica, 2024, 40(12): 2408005-. doi: 10.3866/PKU.WHXB202408005

    5. [5]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    6. [6]

      Jianyu Qin Yuejiao An Yanfeng ZhangIn Situ Assembled ZnWO4/g-C3N4 S-Scheme Heterojunction with Nitrogen Defect for CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408002-. doi: 10.3866/PKU.WHXB202408002

    7. [7]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    8. [8]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    9. [9]

      Guixu Pan Zhiling Xia Ning Wang Hejia Sun Zhaoqi Guo Yunfeng Li Xin Li . Preparation of high-efficient donor-π-acceptor system with crystalline g-C3N4 as charge transfer module for enhanced photocatalytic hydrogen evolution. Chinese Journal of Structural Chemistry, 2024, 43(12): 100463-100463. doi: 10.1016/j.cjsc.2024.100463

    10. [10]

      Wenda WANGJinku MAYuzhu WEIShuaishuai MA . Waste biomass-derived carbon modified porous graphite carbon nitride heterojunction for efficient photodegradation of oxytetracycline in seawater. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 809-822. doi: 10.11862/CJIC.20230353

    11. [11]

      Yanghanbin Zhang Dongxiao Wen Wei Sun Jiahe Peng Dezhong Yu Xin Li Yang Qu Jizhou Jiang . State-of-the-art evolution of g-C3N4-based photocatalytic applications: A critical review. Chinese Journal of Structural Chemistry, 2024, 43(12): 100469-100469. doi: 10.1016/j.cjsc.2024.100469

    12. [12]

      Zhi Zhu Xiaohan Xing Qi Qi Wenjing Shen Hongyue Wu Dongyi Li Binrong Li Jialin Liang Xu Tang Jun Zhao Hongping Li Pengwei Huo . Fabrication of graphene modified CeO2/g-C3N4 heterostructures for photocatalytic degradation of organic pollutants. Chinese Journal of Structural Chemistry, 2023, 42(12): 100194-100194. doi: 10.1016/j.cjsc.2023.100194

    13. [13]

      Hui WangHaodong JiDandan ZhangXudong YangHanchun ChenChunqian JiangWeiliang SunJun DuanWen Liu . Solar-light-driven photocatalytic degradation and detoxification of ciprofloxacin using sodium niobate nanocubes decorated g-C3N4 with built-in electric field. Chinese Chemical Letters, 2025, 36(5): 110200-. doi: 10.1016/j.cclet.2024.110200

    14. [14]

      Deqi FanYicheng TangYemei LiaoYan MiYi LuXiaofei Yang . Two birds with one stone: Functionalized wood composites for efficient photocatalytic hydrogen production and solar water evaporation. Chinese Chemical Letters, 2024, 35(9): 109441-. doi: 10.1016/j.cclet.2023.109441

    15. [15]

      Teng WangJiachun CaoJuan LiDidi LiZhimin Ao . A novel photocatalytic mechanism of volatile organic compounds degradation on BaTiO3 under visible light: Photo-electrons transfer from photocatalyst to pollutant. Chinese Chemical Letters, 2025, 36(3): 110078-. doi: 10.1016/j.cclet.2024.110078

    16. [16]

      Mengmeng AoJian WeiChuan-Shu HeHeng ZhangZhaokun XiongYonghui SongBo Lai . Insight into the activation of peroxymonosulfate by N-doped copper-based carbon for efficient degradation of organic pollutants: Synergy of nonradicals. Chinese Chemical Letters, 2025, 36(1): 109882-. doi: 10.1016/j.cclet.2024.109882

    17. [17]

      Chunyan YangQiuyu RongFengyin ShiMenghan CaoGuie LiYanjun XinWen ZhangGuangshan Zhang . Rationally designed S-scheme heterojunction of BiOCl/g-C3N4 for photodegradation of sulfamerazine: Mechanism insights, degradation pathways and DFT calculation. Chinese Chemical Letters, 2024, 35(12): 109767-. doi: 10.1016/j.cclet.2024.109767

    18. [18]

      Sixiao LiuTianyi WangLei ZhangChengyin WangHuan Pang . Cerium-based metal-organic framework-modified natural mineral vermiculite for photocatalytic nitrogen fixation under visible-light irradiation. Chinese Chemical Letters, 2025, 36(3): 110058-. doi: 10.1016/j.cclet.2024.110058

    19. [19]

      Xin Wang Changzhao Chen Qishen Wang Kai Dai . Graphene quantum dot modified Bi2MoO6 nanoflower for efficient degradation of BPA under visible light. Chinese Journal of Structural Chemistry, 2024, 43(12): 100473-100473. doi: 10.1016/j.cjsc.2024.100473

    20. [20]

      Ruiheng LiangHuizhong WuZhongzheng HuGe SongXuyang ZhangOmotayo A. ArotibaMinghua Zhou . Hierarchical Fe-Bi/Bi7O9I3/OVs microspheres coupled with natural air diffusion electrode to achieve efficient heterogeneous visible-light-driven photoelectro-Fenton degradation of tetracycline without aeration. Chinese Chemical Letters, 2025, 36(4): 110136-. doi: 10.1016/j.cclet.2024.110136

Metrics
  • PDF Downloads(10)
  • Abstract views(949)
  • HTML views(99)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return