Citation: Liu Xiangliang, Li Yingjie, Zhao Jianai, Ning Ping, Tian Senlin. Research Progress of Surfactant Foam-Enhanced Remediation Technology for Contaminated Soil[J]. Chemistry, ;2017, 80(12): 1116-1122. shu

Research Progress of Surfactant Foam-Enhanced Remediation Technology for Contaminated Soil

  • Corresponding author: Tian Senlin, tiansenlin@outlook.com
  • Received Date: 23 June 2017
    Accepted Date: 25 August 2017

Figures(3)

  • The problem of global soil contamination has become increasingly serious. Surfactant foam technology was paid much attention because of foam flow in porous media is controlled mainly by the injection pressure instead of gravity, thus avoiding the expanding of contaminated area. This paper gives a comprehensive overview of surfactant foam technology, and describes the general procedure of foam washing, its advantages and limitations, and analyzes the major factors that impact the efficiency and cost of this treatment technology.
  • 加载中
    1. [1]

    2. [2]

    3. [3]

      ITRC. Technical and regulatory guidelines for soil washing[R]. Interstate technology and regulatory cooperation work group metals in soils work team soil washing project. 1997.

    4. [4]

    5. [5]

      G J Hirasaki, C A Miller, R Szafranski et al. Paper EPE 39292 presented at the 1997 SPE Annual Technical Conference and Exhibition, San Antonio, TX. Society of petroleum engineers, Richardson, TX., 1997:1~16.

    6. [6]

      S W Jeong, M Y Corapcioglu, S E Roosevelt. Environ. Sci. Technol., 2000, 34:3456~3461. 

    7. [7]

      A Bera, K Ojha, A Mandal. J. Surf. Deter., 2013, 16:621~630. 

    8. [8]

      H J B Couto, G Massarani, E C Biscaia Jr et al. J. Hazard. Mater., 2009, 164:1325~1334. 

    9. [9]

      C N Mulligan, R N Yong, B F Gibbs. J. Hazard. Mater., 2001, 85:145~163. 

    10. [10]

      EPAEUA. Treatment technologies for site cleanup:Annual status report., 2007.

    11. [11]

      ITRC. Interstate technology and regulatory cooperation work group metals in soils work team regulatory guidance project. 1998.

    12. [12]

      F I Khan, T Husain, R Hejazi. J. Environ. Manage., 2004, 71(2):95~122. 

    13. [13]

      C N Mulligan, F Eftekhari. Eng. Geol., 2003, 70:269~279. 

    14. [14]

      S L Wang, C N Mulligan. Water Air Soil Poll., 2004, 157:315~330. 

    15. [15]

      R K Rothmel, R W Peters, E S Martin et al. Environ. Sci. Technol., 1998, 32:1667~1675. 

    16. [16]

      P Chowdiah, B R Misra, J J Kilbane. J. Hazard. Mater., 1998, 62:265~280. 

    17. [17]

      L W Lake. Enhanced oil recovery. Prentice-Hall, New Jersey, 1989.

    18. [18]

      S W Jeong, M Y Corapcioglu. J. Contam. Hydrol., 2003, 60:77~96. 

    19. [19]

      L R Zhong, J E Szecsody, F Zhang et al. Vadose Zone J., 2010, 9:757~767. 

    20. [20]

      A Afsharpoor, G S Lee, S I Kam. Chem. Eng. Sci., 2010, 65:3615~3631. 

    21. [21]

      H Wang, J J Chen. Environ. Ear. Sci., 2013, 68(2):567~576. 

    22. [22]

      Y J Tsai, F C Chow, S J Cheng. J. Hazard. Mater., 2009, 166(2):1232~1237.

    23. [23]

      R W Peters. In:Gee G W (ed) Thirty-third Hanford symposium on health and the environment. Battle Press, Conlumbus., 1994, 1067~1087.

    24. [24]

      Y Li, P Zhang. Colloid. Surf. A, 2006, 272(1/2):124~129.

    25. [25]

      D Roy, S Kongaraa. J. Hazard. Mater., 1995, 42(3):247~263. 

    26. [26]

      C Qin, Y Zhao, Y Su et al. Water Environ. Res., 2013, 85(2):133~140. 

    27. [27]

      S Yan, Y Zhao, L Liu et al. J. Environ. Sci. Heal. A, 2014, 49(14):1639~1652. 

    28. [28]

    29. [29]

    30. [30]

      O Atteia, E D C Estrada, H Bertin. Rev. Environ. Sci. Biotechnol., 2013, 12(4):379~389. 

    31. [31]

      J Long, S Tian, Y Niu et al. Polycycl. Aromat. Comp., 2015:1~19.

    32. [32]

      Y Li, S Tian, H Mo et al. J. Environ. Sci., 2011, 23(9):1486~1491. 

    33. [33]

      J Long, S Tian, Y Niu et al. Colloid. Surf. A, 2014, 454(454):172~179.

    34. [34]

      S Tian, J Long, S He. J. Surf. Deter., 2014, 18(1):1~7.

    35. [35]

      J Long, S Tian, J Long et al. J. Solution Chem., 2015, 44(6):1163~1176. 

    36. [36]

      J J Kilbane Ⅱ, P Chowdiah, K J Kayser et al. Land Contam. Reclamat., 1997, 5:41~54.

    37. [37]

      C W Huang, C H Chang. Colloid. Surf. A, 2000, 173:171~179. 

    38. [38]

      L Zhong, N P Qafoku, J E Szecsody et al. Vadose Zone J., 2009, 8:976~985. 

    39. [39]

      J Y Park, Y J Choi, S Moon et al. J. Hazard. Mater., 2009, 163:761~767. 

    40. [40]

      J T Wilson, L E Leach, M Henson et al. Ground Water Monit. Rem., 1986, 6:56~64.

    41. [41]

      D A Wallis, S R Lavinder, D L Michelsen et al. Presented at the 1986 summer national meeting of the american institute of chemical engineers, Boston, MA.

    42. [42]

      W F Guerin, G E Jones. Appl. Environ. Microbiol., 1988, 54:937~944.

    43. [43]

      S J Grimberg, W T Stringfellow, M D Aitken. Appl. Environ. Microbiol., 1996, 62:2387~2392.

    44. [44]

      S Laha, R G Luthy. Biotechnol. Bioeng., 1992, 10:1367~1380.

    45. [45]

      L Deschenes, P Lafrance, J P Villeneuve et al. Appl. Microbiol. Biotechnol., 1996, 46:638~646. 

    46. [46]

      Z Liu, A M Jacobson, R G Luthy. Appl. Environ. Microbiol., 1995, 61:145~151.

    47. [47]

      J D Rouse, D A Sabatini, J M Suflita et al. Crit. Rev. Environ. Sci. Technol., 1994, 24:325~370. 

    48. [48]

      T Cort, A Bielefeldt. J. Environ. Eng., 2000, 126:635~643. 

    49. [49]

      J R Hunt, N Sitar, K S Udell. Water Resour. Res., 1988, 24:1247~1258. 

    50. [50]

      S E Powers, L M Abriola, W J Weber Jr. Water Resour. Res., 1992, 28:2691~2705. 

    51. [51]

      S E Powers, L M Abriola, W J Weber Jr. Water Resour. Res., 1994, 30:321~332. 

    52. [52]

      C N Mulligan, R N Yong, B F Gibbs. Environ. Prog., 1999, 18:50~54. 

    53. [53]

      G G Bernard, L W Holm. Soc. Pet. Eng J., 1964, 19:267~274.

    54. [54]

      G G Bernard, L W Holm, W L Jacobs. Soc. Pet. Eng. J., 1965, 5:295~300. 

    55. [55]

      C D Admas, S Spitzer, R M Cowan. J. Environ. Eng., 1996, 122:477~483. 

    56. [56]

      R A Doong, Y W Wu, W G Lei. Water Sci. Technol., 1998, 37:65~71.

    57. [57]

      Z Liu, S Laha, R G Luthy. Water Sci. Technol., 1991, 23:475~485.

    58. [58]

      J H Nash. Hazardous waste eng res lab report 1987, No. PA/600/2-87/110, PB88-146808.

    59. [59]

      R K Rothmel, R W Peters, E S Martin et al. Environ. Sci. Technol., 1998, 32:1667~1675. 

  • 加载中
    1. [1]

      Yukai Jiang Yihan Wang Yunkai Zhang Yunping Wei Ying Ma Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033

    2. [2]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    3. [3]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    4. [4]

      Simin Fang Wei Huang Guanghua Yu Cong Wei Mingli Gao Guangshui Li Hongjun Tian Wan Li . Integrating Science and Education in a Comprehensive Chemistry Design Experiment: The Preparation of Copper(I) Oxide Nanoparticles and Its Application in Dye Water Remediation. University Chemistry, 2024, 39(8): 282-289. doi: 10.3866/PKU.DXHX202401023

    5. [5]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    6. [6]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    7. [7]

      Biao Zuo Yizhi Zhang Zhengkai Chen Houkuan Tian Yongneng Wang Wei Zhang Weizu Wang Xuming Zheng Xinping Wang . Strengthening the Functions of Academic Research and Promoting the Integration of Science and Education: Exploration Ways to Cultivate the Talents of Undergraduate Chemistry Students. University Chemistry, 2024, 39(11): 38-43. doi: 10.3866/PKU.DXHX202402066

    8. [8]

      Ruiqin FengYe FanYun FangYongmei Xia . Strategy for Regulating Surface Protrusion of Gold Nanoflowers and Their Surface-Enhanced Raman Scattering. Acta Physico-Chimica Sinica, 2024, 40(4): 2304020-0. doi: 10.3866/PKU.WHXB202304020

    9. [9]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    10. [10]

      Bei Liu Heng Li Mei Yang Yijiang Liu . Teaching Reform and Exploration in Polymer Chemistry with an “Experiment-Intensified” Approach for Masters in Materials and Chemical Engineering. University Chemistry, 2025, 40(4): 10-14. doi: 10.3866/PKU.DXHX202401010

    11. [11]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    12. [12]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    13. [13]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    14. [14]

      Xinxin YUYongxing LIUXiaohong YIMiao CHANGFei WANGPeng WANGChongchen WANG . Photocatalytic peroxydisulfate activation for degrading organic pollutants over the zero-valent iron recovered from subway tunnels. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 864-876. doi: 10.11862/CJIC.20240438

    15. [15]

      Xinting XIONGZhiqiang XIONGPanlei XIAOXuliang NIEXiuying SONGXiuguang YI . Synthesis, crystal structures, Hirshfeld surface analysis, and antifungal activity of two complexes Na(Ⅰ)/Cd(Ⅱ) assembled by 5-bromo-2-hydroxybenzoic acid ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1661-1670. doi: 10.11862/CJIC.20240145

    16. [16]

      Yajuan XingHui XueJing SunNiankun GuoTianshan SongJiawen SunYi-Ru HaoQin Wang . Cu3P-Induced Charge-Oriented Transfer and Surface Reconstruction of Ni2P to Achieve Efficient Oxygen Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(3): 2304046-0. doi: 10.3866/PKU.WHXB202304046

    17. [17]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    18. [18]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    19. [19]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

Metrics
  • PDF Downloads(41)
  • Abstract views(3920)
  • HTML views(436)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return