Citation: WANG Hong-hao, LIU Su-yao, ZHANG Huai-ke, GUO Da-guang, MA Jun, REN Jie, WANG Hai-yan. Synthesis and characterization of ZSM-22 zeolites and their catalytic performance in alkylation reaction[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 1010-1016. shu

Synthesis and characterization of ZSM-22 zeolites and their catalytic performance in alkylation reaction

Figures(8)

  • The ZSM-22 molecular sieves with various morphologies were synthesized by different methods. XRD, SEM, BET, MAS NMR, NH3-TPD and Py-FTIR were used to study the structure, morphology, surface area, Si-Al coordination and acidity of the samples. Furthermore, the toluene-methanol alkylation as probe reaction was used to investigate the effect of ZSM-22 zeolites morphology on catalytic performance. The lattice parameters, surface areas, Si-Al coordination and acidity of all samples are obviously different. As a result, the interaction of each bundle of the bundle-like ZSM-22 zeolites leads to the structure change of Si (4Si) coordination, the increase of T3 and T4 with decrease of T2 location, and thus displays more L acid sites. At 380℃ reaction temperature, the bundle-like ZSM-22 zeolite catalyst shows high selectivity to p-xylene (76.1%) at about 16.7% conversion in the toluene-methanol alkylation.
  • 加载中
    1. [1]

      KOKOTAILO G T, SCHLENKER J L, DWYER F G, VALYOCSIK E W. The framework topology of ZSM-22:A high silica zeolite[J]. Zeolite, 1985,5(6):349-351. doi: 10.1016/0144-2449(85)90122-8

    2. [2]

      SIMON M W, SUIB S L, OYOUNG C L. Synthesis and characterization of ZSM-22 zeolites and their catalytic behavior in 1-butene isomerization reactions[J]. J Catal, 1994,147(2):484-493. doi: 10.1006/jcat.1994.1165

    3. [3]

      CHAI Zhi-bo, LV En-jing, ZHANG Huai-ke, REN Jie. Effect of ethanol on the isomerization of n-heptane over Pt/SAPO-11 and Pt/ZSM-22 catalysts[J]. J Fuel Chem Technol, 2014,42(2):208-211.  

    4. [4]

      LIU S Y, REN J, ZHU S J, ZHANG H K, LÜ E J, XU J, LI Y W. Synthesis and characterization of the Fe-substituted ZSM-22 zeolite catalyst with high n-dodecane isomerizaton performance[J]. J Catal, 2015,330:485-496. doi: 10.1016/j.jcat.2015.07.027

    5. [5]

      MURAZA O, ABDUL L A, TAGO T, NANDIYANTO A B D, KONNO H, NAKASAKA Y, YAMAN Z H, MASUDA T. Microwave-assisted hydrothermal synthesis of submicron ZSM-22 zeolite and their applications in light olefin production[J]. Microporous Mesoporous Mater, 2015,206:136-143. doi: 10.1016/j.micromeso.2014.12.025

    6. [6]

      KUMAR R, RATNASAMY P. Isomerization and formation of xylenes over ZSM-22 and ZSM-23 zeolites[J]. J Catal, 1989,116(2):440-448. doi: 10.1016/0021-9517(89)90110-3

    7. [7]

      YIN Li-ying, LIU jing, TAN juan, YIN Jian-bo, WU Zhuo. Methylation of toluene with methanol over ZSM-22 zeolite catalysts[J]. Ind Catal, 2009,17(1):48-53.  

    8. [8]

      CHEN X X, YAN W F, SHEN W L, Yu J H, CAO X J, XU R R. Morphology control of self-stacked silicalite-1 crystals using microwave-assisted solvothermal synthesis[J]. Microporous Mesoporous Mater, 2007,104(1/3):296-304.

    9. [9]

      YANG Ai-mei, TIAN Hai-feng, ZHA Fei, CHANG Yue. Preparation of different morphology HZSM-5 and its application in catalytic synthesis of dimethyl ether from CO2 hydrogenation[J]. Fine Chem, 2015,32(4):416-421.  

    10. [10]

      SONG Meng-lu, DONG He-xin, HAN Li, CHEN Yi-liang, ZHAN Yu-zhong. Influence of various alcohol on the hydrothermal synthesis of SAPO-56 molecular sieve[J]. Appl Chem Ind, 2015,44(9):1577-1585.  

    11. [11]

      WANG Z M, TIAN Z J, WEN G D, TENG F, XU Y P, XU Z S, LIN L W. Synthesis and characterization of SAPO-11 molecular sieves from alcoholic systems[J]. React Kinet Catal Lett, 2006,88(1):81-88. doi: 10.1007/s11144-006-0113-4

    12. [12]

      LI Jing, LIU Su-yao, ZHANG Huai-ke, LV En-jing, REN Peng-ju, REN Jie. Synthesis and characterization of an unusual snowflake-shaped ZSM-5 zeolite with high catalytic performance in the methanol to olefin reaction[J]. Chin J Catal, 2016,37(2):308-315. doi: 10.1016/S1872-2067(15)60979-2

    13. [13]

      KALITA B, TALUKDAR A K. An effcient synthwsis of nanocrystalline MFI zeolite using different silica sources:A green approach[J]. Mate Res Bull, 2009,44(2):254-258. doi: 10.1016/j.materresbull.2008.06.014

    14. [14]

      MINTOVA S, VALTCHEV V. Effect of the silica source on the formation of nanosized silicalite-1:An in situ dynamic light scattering study[J]. Microporous Mesoporous Mater, 2002,55(2):171-179. doi: 10.1016/S1387-1811(02)00401-8

    15. [15]

      TREACY M M J, HIGGINS J B.Collection of Simulated XRD Powder Patterns for Zeolites[M].International Zeolite Association, 2007, 430.

    16. [16]

      GREGG S J, SING K S W.Adsirption, Surface Area and Porosity[M].Academic Press, London, 1982, 154.

    17. [17]

      DEREWINSKI M, SARV P, MIFSUD A. Thermal stability and siting of aluminum in isostructural ZSM-22 and Theta-1 zeolite[J]. Catal Today, 2006,114(2/3):197-204.

    18. [18]

      WANG G, LIU Q J, SU W G, LI X J, JIANG Z X, FANG X C, HAN C R, LI C. Hydroisomerization activity and selectivity of n-dodecane over modified Pt/ZSM-22 catalysts[J]. Appl Catal A:Gen, 2008,335(1):20-27. doi: 10.1016/j.apcata.2007.11.002

    19. [19]

      LIU S Y, REN J, ZHANG H K, LV E J, YANG Y, LI Y-W. Synthesis, characterization and isomerization performance of micro/mesoporous materials based on H-ZSM-22 zeolite[J]. J Catal, 2016,335:11-23. doi: 10.1016/j.jcat.2015.12.009

    20. [20]

      NIE Yi-miao, XIA Mao-hui, BAI Li-mei, LIU Shu-xian, ZHANG Jin-xia, NIU Fu-sheng. 27Al and 29Si-MAR spectrogram analysis of metasilicate (aluminosilicate) crystal[J]. Bull Chin Ceram Soc, 2012,31(5):1200-1203.

    21. [21]

      GAO Xiong-hou, ZHANG Zhong-dong, WANG Jin-jun, WANG Zhi-feng, MAO Xue-wen, SHEN Shi-kong. Effect of crystallization temperature on structure and performance of MCM-41[J]. J Mol Catal, 1999,13(2):127-131.  

    22. [22]

      BLASCO T, CORMA A, MAITÍNEZ T J. Hydrothermal stabilization of ZSM-5 catalytic-cracking additives by phosphorus addition[J]. J Catal, 2006,237(2):267-277. doi: 10.1016/j.jcat.2005.11.011

    23. [23]

      VOS A M, ROZANSKA X, SCHOONHEYDT R A, VAN S R A, HUTSCHKA F, HAFNER J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J Am Chem Soc, 2001,123(12):2799-2809. doi: 10.1021/ja001981i

    24. [24]

      YASHIMA T, AHMAD H, YAMAZAKI K, KATSUTA M, HARA N. Alkylation of synthetic zeolites I.Alkylation of toluene with methano[J]. J Catal, 1970,16(3):273-280. doi: 10.1016/0021-9517(70)90223-X

    25. [25]

      BORGNA A, SEPÚLVEDA J, MAGNI S I, APESTEGUÍA C R. Active sites in the alkylation of toluene with methanol:A study by selective acid-base poisoning[J]. Appl Catal, 2004,276(1/2):207-215.

    26. [26]

      NAMBA S, KIM J H, YASHIMA T. Para-selectivity of zeolites and metallosilicates MFI structure[J]. Stud Sci Catal, 1994,83:279-286. doi: 10.1016/S0167-2991(08)63267-X

    27. [27]

      ZHANG Zhi-ping, ZHAO yan, WU Hong-yu, TAN Wei, WANG Xiang-sheng, GUO Xin-wen. Shape-selective alkylation of toluene with methanol over modified nano-scale HZSM-5 zeolite[J]. Chin J Catal, 2011,32(7):1280-1286.  

    28. [28]

      TAN W, LIU M, ZHAO Y, HOU K K, WU H Y, ZHANG A F, LIU H O, WANG Y R, SONG C S, GUO X W. Para-selective methylation of toluene with methanol over nano-sized ZSM-5 catalysts:Synergistic effects of surface modifications with SiO2, P2O5 and MgO[J]. Microporous Mesoporous Mater, 2014,196:18-30. doi: 10.1016/j.micromeso.2014.04.050

    29. [29]

      DING Chun-hua, WANG Xiang-sheng, GUO Xin-wen. Study on alkylation of toluene with methanol over oxide modified MCM-22 zeolite[J]. Acta Pet Sin, 2007,23(5):38-42.  

    30. [30]

      DING C H, WANG X S, GUO X W, ZHANG S G. Characterization and catalytic alkylation of hydrothermally dealuminated nanoscale ZSM-5 zeolite catalyst[J]. Catal Commun, 2007,9(4):487-493.

    31. [31]

      DING Chun-hua, WANG Xiang-sheng, GUO Xin-wen. Effect of hydrothermal treatnent of MCM-22 catalyst on the acidity, pore structure and a lkylation properties of toluene with methanol[J]. Chem J Chin Univ, 2007,28(5):922-927.  

    32. [32]

      ZHAO Y, TAN W, WU H Y, ZHANG A F, LIN M, LI G M, WANG X S, SONG C S, GUO X W. Effect of Pt on stability of nano-scale ZSM-5 catalyst for toluene alkylation with methanol into p-xylene[J]. Catal Today, 2011,160(1):179-183. doi: 10.1016/j.cattod.2010.05.036

    33. [33]

      ZHOU Jian, LIU Zhi-cheng, LI Li-yuan, WANG Yang-dong, GAO Huan-xin, YANG Wei-min, XIE Zai-ku, TANG Yi. Hieraichical mesoporous ZSM-5 zeolite with increased external surface acid sites and high catalytic performance in o-xylene isomerization[J]. Chin J Catal, 2013,34(7):1429-1433. doi: 10.1016/S1872-2067(12)60602-0

    34. [34]

      KIM J H, NAMBA S, YASHIMA T. Para-selectivity of zeolites with MFI structure difference between disproportionation and alkylation[J]. Appl Catal, 1992,83(1):51-58. doi: 10.1016/0926-860X(92)80025-8

    35. [35]

      ČEJKA J, ŽILKOVÁN , WICHTERLOVÁB , EDER-MIRTH G, LERCHER J A. Decisive role of transport rate of products for zeolite para-selectivity:Effect of coke deposition and external surface silylation on activity and selectivity of HZSM-5 in alkylation of toluene[J]. Zeolites, 1996,17(3):265-271. doi: 10.1016/0144-2449(96)00006-1

    36. [36]

      WEI J. A mathematical theory of enhanced para-xylene selectivity in molecular sieve catalysts[J]. J Catal, 1982,76(2):433-439. doi: 10.1016/0021-9517(82)90272-X

    37. [37]

      CHEN N Y, KAEDING W W, DWTER F G. Para-directed aromatic reactions over shape-selective molecular sieve zeolite catalysts[J]. J Am Chem Soc, 1979,101(22):6783-6784. doi: 10.1021/ja00516a065

  • 加载中
    1. [1]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    2. [2]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    3. [3]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

    4. [4]

      Yong Shu Xing Chen Sai Duan Rongzhen Liao . How to Determine the Equilibrium Bond Distance of Homonuclear Diatomic Molecules: A Case Study of H2. University Chemistry, 2024, 39(7): 386-393. doi: 10.3866/PKU.DXHX202310102

    5. [5]

      Yuhao SUNQingzhe DONGLei ZHAOXiaodan JIANGHailing GUOXianglong MENGYongmei GUO . Synthesis and antibacterial properties of silver-loaded sod-based zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 761-770. doi: 10.11862/CJIC.20230169

    6. [6]

      Pei Li Yuenan Zheng Zhankai Liu An-Hui Lu . Boron-Containing MFI Zeolite: Microstructure Control and Its Performance of Propane Oxidative Dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(4): 100034-. doi: 10.3866/PKU.WHXB202406012

    7. [7]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    8. [8]

      Yiping HUANGLiqin TANGYufan JICheng CHENShuangtao LIJingjing HUANGXuechao GAOXuehong GU . Hollow fiber NaA zeolite membrane for deep dehydration of ethanol solvent by vapor permeation. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 225-234. doi: 10.11862/CJIC.20240224

    9. [9]

      Jin Tong Shuyan Yu . Crystal Engineering for Supramolecular Chirality. University Chemistry, 2024, 39(3): 86-93. doi: 10.3866/PKU.DXHX202308113

    10. [10]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    11. [11]

      Yuqiao Zhou Weidi Cao Shunxi Dong Lili Lin Xiaohua Liu . Study on the Teaching Reformation of Practical X-ray Crystallography. University Chemistry, 2024, 39(3): 23-28. doi: 10.3866/PKU.DXHX202303003

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Zhiwen HUPing LIYulong YANGWeixia DONGQifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172

    14. [14]

      Jiarui Wu Gengxin Wu Yan Wang Yingwei Yang . Crystal Engineering Based on Leaning Towerarenes. University Chemistry, 2024, 39(3): 58-62. doi: 10.3866/PKU.DXHX202304014

    15. [15]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    16. [16]

      Juan Yuan Bin Zhang Jinping Wu Mengfan Wang . Design of a Comprehensive Experiment on Preparation and Characterization of Cu2(Salen)2 Nanomaterials with Two Distinct Morphologies. University Chemistry, 2024, 39(10): 420-425. doi: 10.3866/PKU.DXHX202402014

    17. [17]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    18. [18]

      Lijun Huo Mingcun Wang Tianyi Zhao Mingjie Liu . Exploration of Undergraduate and Graduate Integrated Teaching in Polymer Chemistry with Aerospace Characteristics. University Chemistry, 2024, 39(6): 103-111. doi: 10.3866/PKU.DXHX202312059

    19. [19]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    20. [20]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

Metrics
  • PDF Downloads(3)
  • Abstract views(2019)
  • HTML views(661)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return