Citation: REN Shi-biao, ZHANG Sheng, ZHAO Rong, WANG Zhi-cai, LEI Zhi-ping, PAN Chun-xiu, KANG Shi-gang, SHUI Heng-fu. Nanosheets of Ni/Clay as high efficient catalysts for hydrogenation of aromatics[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(2): 171-178. shu

Nanosheets of Ni/Clay as high efficient catalysts for hydrogenation of aromatics

  • Corresponding author: REN Shi-biao, rensb@ahut.edu.cn SHUI Heng-fu, shhf@ahut.edu.cn
  • Received Date: 7 December 2017
    Revised Date: 3 January 2018

    Fund Project: the Natural Scientific Foundation of China 21476004the Natural Scientific Foundation of China 21776001The project was supported by the Project of Coal Joint Fund from Natural Science Foundation of China and Shenhua Group Corporation Limited (U1361125, U1261208), the Natural Scientific Foundation of China (21776001, 21476002, 21476003, 21476004), the Key Science and Technology Program of Anhui Province, China (1501041131) and the Provincial Innovative Group for Processing & Clean Utilization of Coal Resourcethe Project of Coal Joint Fund from Natural Science Foundation of China and Shenhua Group Corporation Limited U1261208the Key Science and Technology Program of Anhui Province, China 1501041131the Natural Scientific Foundation of China 21476003the Natural Scientific Foundation of China 21476002the Project of Coal Joint Fund from Natural Science Foundation of China and Shenhua Group Corporation Limited U1361125

Figures(6)

  • Using montmorillonite (MMT), a natural layered clay, as the layered precursor, nanosheets of Ni/MMT are obtained via a facile method, in which the nickel components are introduced on to the surface of the exfoliated MMT nanosheets dispersed in water via deposition-precipitation with nickel nitrate and urea. Due to their unique properties originated from the two-dimensional (2D) structure, which favors mass transfer and diffusion of the aromatics and their hydrogenation products over the catalyst during reaction, the obtained nanosheets of Ni/Clay show higher efficient for hydrogenation of aromatics than Ni/SBA-15 and Ni/γ-Al2O3 catalysts. And the highest TOF for hydrogenation of tetralin over the nanosheets of Ni/Clay is obtained as nickel loading being high to 18.5%.
  • 加载中
    1. [1]

      CHOI M, NA K, KIM J, SAKAMOTOY , TERASAKI O, RAYOO R. Stable single-unit-cell nanosheets of zeolite MFI as active and long-lived catalysts[J]. Nature, 2009,461:246-249. doi: 10.1038/nature08288

    2. [2]

      ROTH W J, NACHTIGALL P, MORRIS R E, ČEJKA J. Two-Dimensional zeolites:Current status and perspectives[J]. Chem Rev, 2014,114(9):4807-4837. doi: 10.1021/cr400600f

    3. [3]

      OGINO I, NIGRA M M, HWANG S J, HA J M, REA T, STACEY I, ZONES S I, KATZ A. Delamination of layered zeolite precursors under mild conditions:Synthesis of UCB-1 via fluoride/chloride anion-promoted exfoliation[J]. J Am Chem Soc, 2011,1339(10):3288-3291.  

    4. [4]

      EILERTSEN E A, OGINO I, HWANG S J, REA T, YEH S, ZONES S I, KATZ A. Nonaqueous fluoride/chloride anion-promoted delamination of layered zeolite precursors:Synthesis and characterization of UCB-2[J]. Chem Mater, 2011,23(24):5404-5408. doi: 10.1021/cm202364q

    5. [5]

      AN Z, HE J, DUAN X. Catalysts with catalytic sites highly dispersed from layered double hydroxide as precursors[J]. Chin J Catal, 2013,34:225-234.  

    6. [6]

      WANG J, ZHAO L, SHI H, HE J. Highly enantioselective and efficient asymmetric epoxidation catalysts:Inorganic nanosheets modified withα-amino acids as ligands[J]. Angew Chem Int Ed, 2011,50:9171-9176. doi: 10.1002/anie.201103713

    7. [7]

      YAO H B, MAO L B, YAN Y X, CONG H P, LEI X, YU S H. Gold nanoparticle functionalized artificial nacre:Facile in situ growth of nanoparticles on montmorillonite nanosheets, self-assembly, and their multiple properties[J]. ACS Nano, 2012,6(9):8250-8260. doi: 10.1021/nn3029315

    8. [8]

      YAO H B, TAN Z H, FANG H Y, YU S H. Artificial nacre-like bionano-composite films from the self-assembly of chitosan-montmor-illonite hybrid building blocks[J]. Angew Chem Int Ed, 2010,49:10127-10131. doi: 10.1002/anie.201004748

    9. [9]

      INTROZZI L, BLOMFEID O J T, TRABATTONI S, TAVAZZI S, SANTO N, SCHIRALDI A, PIERGIOVANNI L, FARRIS S. Ultrasound-assisted pullulan/montmorillonite bionanocomposite coating with high oxygen barrier properties[J]. Langmuir, 2012,28(30):11206-11214. doi: 10.1021/la301781n

    10. [10]

      GIL A, KORILI S A, VICENTE M A. Recent advances in the synthesis and catalytic application of pillared clay catalysts[J]. Catal Rev Sci Eng, 2008,50:153-221. doi: 10.1080/01614940802019383

    11. [11]

      ZHANG W J, LI K S M, WANG R J, YUE P L, Gao P. Preparation of stable exfoliated Pt-Clay nanocatalyst[J]. Langmuir, 2009,25(14):8226-8234.  

    12. [12]

      ONG W J, PUTRI L K, TAN L L, CHAI S P, YONG S T. Heterostructured AgX/g-C3N4 (X=Cl and Br) nanocomposites via a sonication-assisted deposition-precipitation approach:Emerging role of halide ions in the synergistic photocatalytic reduction of carbon dioxide[J]. Appl Catal B:Environ, 2016,180:530-543. doi: 10.1016/j.apcatb.2015.06.053

    13. [13]

      SKAF M, AOUAD S, HANY S, COUSIN R, ABI-AAD E, ABOUKAIS A. Physicochemical characterization and catalytic performance of 10% Ag/CeO2 catalysts prepared by impregnation and deposition-precipitation[J]. J Catal, 2014,320:137-146. doi: 10.1016/j.jcat.2014.10.006

    14. [14]

      KITTISAKMONTREE P, PONGTHAWORNSAKUN B, YOUSHIDA H, FUJITA S, ARAI M, PANPRANOT J. The liquid-phase hydrogenation of 1-heptyne over Pd-Au/TiO2 catalysts prepared by the combination of incipient wetness impregnation and deposition-precipitation[J]. J Catal, 2003,297:155-164.  

    15. [15]

      BURATTIN B, CHE M, LOUIS C. Ni/SiO2 materials prepared by deposition-precipitation:Influence of the reduction conditions and mechanism of formation of metal particles[J]. J Phys Chem B, 2000,104(45):10482-10489. doi: 10.1021/jp0003151

    16. [16]

      LIU H C, WANG H, SHEN J H, SUN Y, LIU Z M. Preparation, characterization and activities of the nano-sized Ni/SBA-15 catalyst for producing COx -free hydrogen from ammonia[J]. Appl Catal A:Gen, 2008,337(2):138-147. doi: 10.1016/j.apcata.2007.12.006

    17. [17]

      GOMEZ-REYNOSO R, RAMLREZ J, NARES R, LUNA R, MURRIETA F. Characterization and catalytic activity of Ni/SBA-15, synthesized by deposition-precipitation[J]. Catal Today, 2005,107/108:926-932. doi: 10.1016/j.cattod.2005.07.152

    18. [18]

      KIM H J, SONG C S. Enhancing sulfur tolerance of Pd catalysts by hydrogen spillover with two different zeolite supports for low-temperature hydrogenation of aromatics[J]. Energy Fuels, 2014,28(11):6788-6792. doi: 10.1021/ef501541j

    19. [19]

      KIRUMAKKI S R, SHPEIZER B G, SAGAR G V, CHARY K V R, CLEARFIELD A. Hydrogenation of naphthalene over NiO/SiO2-Al2O3 catalysts:Structure-activity correlation[J]. J Catal, 2006,242(2):319-331. doi: 10.1016/j.jcat.2006.06.014

    20. [20]

      REN S B, ZHAO R, ZHANG P, LEI Z P, WANG Z C, KANG S G, PAN C X, SHUI H F. Effect of activation atmosphere on the reduction behaviors, dispersion and activities of nickel catalysts for the hydrogenation of naphthalene[J]. Reac Kinet Mech Cat, 2014,111(1):247-257. doi: 10.1007/s11144-013-0629-3

  • 加载中
    1. [1]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    2. [2]

      Shaoming DongYiming NiuYinghui PuYongzhao WangBingsen Zhang . Subsurface carbon modification of Ni-Ga for improved selectivity in acetylene hydrogenation reaction. Chinese Chemical Letters, 2024, 35(12): 109525-. doi: 10.1016/j.cclet.2024.109525

    3. [3]

      Jiang GongFengling ZhengHanqing ZhangWeihan ShuHao WangNi ZhangPengbing HuangChuancai ZhangBin Dai . The interfacial effect of SiO2-Ni3Mo3N efficiently catalyzes the low-temperature hydrogenation of dimethyl oxalate to ethanol. Chinese Chemical Letters, 2025, 36(8): 111122-. doi: 10.1016/j.cclet.2025.111122

    4. [4]

      Ming HuangXiuju CaiYan LiuZhuofeng Ke . Base-controlled NHC-Ru-catalyzed transfer hydrogenation and α-methylation/transfer hydrogenation of ketones using methanol. Chinese Chemical Letters, 2024, 35(7): 109323-. doi: 10.1016/j.cclet.2023.109323

    5. [5]

      Minghui ZhangNa ZhangQian ZhaoChao WangAlexander SteinerJianliang XiaoWeijun Tang . Cobalt pincer complex-catalyzed highly enantioselective hydrogenation of quinoxalines. Chinese Chemical Letters, 2025, 36(4): 110081-. doi: 10.1016/j.cclet.2024.110081

    6. [6]

      Mengjun Zhao Yuhao Guo Na Li Tingjiang Yan . Deciphering the structural evolution and real active ingredients of iron oxides in photocatalytic CO2 hydrogenation. Chinese Journal of Structural Chemistry, 2024, 43(8): 100348-100348. doi: 10.1016/j.cjsc.2024.100348

    7. [7]

      Jinyuan Cui Tingting Yang Teng Xu Jin Lin Kunlong Liu Pengxin Liu . Hydrogen spillover enhances the selective hydrogenation of α,β-unsaturated aldehydes on the Cu-O-Ce interface. Chinese Journal of Structural Chemistry, 2025, 44(1): 100438-100438. doi: 10.1016/j.cjsc.2024.100438

    8. [8]

      Sanmei WangDengxin YanWenhua ZhangLiangbing Wang . Graphene-supported isolated platinum atoms and platinum dimers for CO2 hydrogenation: Catalytic activity and selectivity variations. Chinese Chemical Letters, 2025, 36(4): 110611-. doi: 10.1016/j.cclet.2024.110611

    9. [9]

      Danfeng ZhaoJing LinRushuo LiLiang ChuZhaokun WangXiubing HuangGe Wang . Constructing frustrated Lewis pairs on porous Ce-based metal-organic frameworks with improved dicyclopentadiene hydrogenation activity. Chinese Chemical Letters, 2025, 36(7): 110172-. doi: 10.1016/j.cclet.2024.110172

    10. [10]

      Jiaxuan YANGChenfa DENGJingyang LIUChenzexi XUHongxin CHENYahui ZHUYing LIShuhua WANGRongping ZHOUChao CHEN . Advances in selective hydrogenation of α, β-unsaturated aldehydes/ketones catalyzed by metal-organic frameworks and their derivatives: A review. Chinese Journal of Inorganic Chemistry, 2025, 41(10): 1973-2010. doi: 10.11862/CJIC.20250175

    11. [11]

      Zixuan ZhuXianjin ShiYongfang RaoYu Huang . Recent progress of MgO-based materials in CO2 adsorption and conversion: Modification methods, reaction condition, and CO2 hydrogenation. Chinese Chemical Letters, 2024, 35(5): 108954-. doi: 10.1016/j.cclet.2023.108954

    12. [12]

      Ruixue LiuXiaobing DingQiwei LangGen-Qiang ChenXumu Zhang . Enantioselective and divergent construction of chiral amino alcohols and oxazolidin-2-ones via Ir-f-phamidol-catalyzed dynamic kinetic asymmetric hydrogenation. Chinese Chemical Letters, 2025, 36(3): 110037-. doi: 10.1016/j.cclet.2024.110037

    13. [13]

      Hua LiuJian ZhaoQi LiXiang-Yu ZhangZhi-Wei ZhengKun HuangDa-Bin QinBin Zhao . Indium-captured zirconium-porphyrin frameworks displaying rare multi-selectivity for catalytic transfer hydrogenation of aldehydes and ketones. Chinese Chemical Letters, 2025, 36(6): 110593-. doi: 10.1016/j.cclet.2024.110593

    14. [14]

      Haobo WangFei WangYong LiuZhongxiu LiuYingjie MiaoWanhong ZhangGuangxin WangJiangtao JiQiaobao Zhang . Emerging natural clay-based materials for stable and dendrite-free lithium metal anodes: A review. Chinese Chemical Letters, 2025, 36(2): 109589-. doi: 10.1016/j.cclet.2024.109589

    15. [15]

      Yi Zhang Biao Wang Chao Hu Muhammad Humayun Yaping Huang Yulin Cao Mosaad Negem Yigang Ding Chundong Wang . Fe–Ni–F electrocatalyst for enhancing reaction kinetics of water oxidation. Chinese Journal of Structural Chemistry, 2024, 43(2): 100243-100243. doi: 10.1016/j.cjsc.2024.100243

    16. [16]

      Shuyuan Pan Zehui Yang Fang Luo . Ni-based electrocatalysts for urea assisted water splitting. Chinese Journal of Structural Chemistry, 2024, 43(8): 100373-100373. doi: 10.1016/j.cjsc.2024.100373

    17. [17]

      Xiumei LIYanju HUANGBo LIUYaru PAN . Syntheses, crystal structures, and quantum chemistry calculation of two Ni(Ⅱ) coordination polymers. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 2031-2039. doi: 10.11862/CJIC.20240109

    18. [18]

      Tan ZhangZhikai CheYuru SongJinping LiYuhan SunGuang Liu . Reinforced nitrogen fixation via synergistic Ru-Ni dual sites. Chinese Chemical Letters, 2025, 36(9): 111295-. doi: 10.1016/j.cclet.2025.111295

    19. [19]

      Maomao Liu Guizeng Liang Ningce Zhang Tao Li Lipeng Diao Ping Lu Xiaoliang Zhao Daohao Li Dongjiang Yang . Electron-rich Ni2+ in Ni3S2 boosting electrocatalytic CO2 reduction to formate and syngas. Chinese Journal of Structural Chemistry, 2024, 43(8): 100359-100359. doi: 10.1016/j.cjsc.2024.100359

    20. [20]

      Mengzhao LiuJie YinChengjian WangWeiji WangYuan GaoMengxia YanPing Geng . P doped Ni3S2 and Ni heterojunction bifunctional catalysts for electrocatalytic 5-hydroxymethylfurfural oxidation coupled hydrogen evolution reaction. Chinese Chemical Letters, 2025, 36(9): 111271-. doi: 10.1016/j.cclet.2025.111271

Metrics
  • PDF Downloads(6)
  • Abstract views(879)
  • HTML views(104)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return