Citation: Wang Liping, Zhao Licheng, Zhang Linyan. Synthesis of Oligomeric Polycarbonate Diol Catalyized by Mesoporous ZnO Microspheres derived from IRMOF-1[J]. Chemistry, ;2018, 81(8): 705-712. shu

Synthesis of Oligomeric Polycarbonate Diol Catalyized by Mesoporous ZnO Microspheres derived from IRMOF-1

  • Received Date: 23 March 2018
    Accepted Date: 14 May 2018

Figures(11)

  • IRMOF-1 is one of the most classic IRMOF series MOFs materials. Three ZnO catalysts were prepared by heat treatment of IRMOF-1 directly in air at different temperatures, and the crystal structure, morphology, pore structure and surface alkalinity of the samples were characterized by XRD, SEM, BET measurements and CO2-TPD. The results showed that as-prepared ZnO are a typical mesoporous material with spherical structure, their BET surfcae area and pore size are 49.7~62.2 m2/g and 2.18~2.92 nm, respectively. The catalytic activities of mesoporous ZnO microspheres for the synthesis polycarbnate diol via diphenyl carbonate and neopentyl glycol (NPG) were investigated. The results exhibited that the ZnO microspheres obtained at 500℃ exhibit good catalytic activity in the transesterification of DPC and NPG.
  • 加载中
    1. [1]

      A Eceiza, M Larrañaga, K de la Caba et al. J. Appl. Polym. Sci., 2008, 108(5):3092~3103. 

    2. [2]

      D K Lee, H B Tsai, Z D Yang et al. J. Appl. Polym. Sci., 2012, 126(S2):275~282. 

    3. [3]

      C M Gómez, M Culebras, A Cantarero et al. Appl. Surf. Sci., 2013, 275(21):295~302. 

    4. [4]

      S Y Oh, M S Kang, J C Knowles et al. J. Biomater. Appl., 2015, 30(3):327~337. 

    5. [5]

      N Liu, Y Zhao, M Kang et al. Prog. Org. Coat., 2015, 82:46~56. 

    6. [6]

      J Yang, Y Gao, J Li et al. Rsc Adv., 2013, 3(22):8291~8297. 

    7. [7]

       

    8. [8]

       

    9. [9]

       

    10. [10]

       

    11. [11]

       

    12. [12]

      Z Q Wang, X Yang, S Liu et al. Rsc Adv., 2015, 5(106):87311~87319. 

    13. [13]

      Y X Feng, N Yin, Q F Li et al. Ind. Eng. Chem. Res., 2008, 47(7):2140~2145. 

    14. [14]

      S Yan, S O Salley, K Y S Ng. Appl. Catal. A, 2009, 353(2):203~212. 

    15. [15]

      R Madhuvilakku, S Piraman. Bioresource Technol., 2013, 150(12):55~59. 

    16. [16]

      I Istadi, S A Prasetyo, T S Nugroho. Procedia Environ. Sci., 2015, 23:394~399. 

    17. [17]

       

    18. [18]

      E A Dolgopolova, A J Brandt, O Ejegbavwo et al. J. Am. Chem. Soc., 2017, 139(14):5201~5209. 

    19. [19]

      K Li, D H Olson, J Y Lee et al. Adv. Funct. Mater., 2010, 18(15):2205~2214.

    20. [20]

       

    21. [21]

      J S Qin, D Y Du, M Li et al. J. Am. Chem. Soc., 2016, 138(16):5299~5307. 

    22. [22]

       

    23. [23]

       

    24. [24]

      F Zhang, C Chen, W M Xiao et al. Catal. Commun., 2012, 26(35):25~29. 

    25. [25]

      S Nayak, S Malik, S Indris et al. Chem. Eur. J., 2010, 16(4):1158~1162. 

    26. [26]

      L He, Y Liu, J Liu et al. Angew. Chem. Int.Ed., 2013, 52(13):3741~3745. 

    27. [27]

       

    28. [28]

      K Tanabe, M Misono, Y Ono et al. New solid acids and bases:their catalytic properties. Amsterdam:Elsevier Science Ltd, 1990.

    29. [29]

      F Ma, M A Hanna. Bioresource Technol., 1999, 70(1):1~15. 

    30. [30]

      T Fujitani, J Nakamura. Appl. Catal. A, 2000, 191(1-2):111~129. 

    31. [31]

      S Gryglewicz. Appl. Catal. A, 2000, 192(1):23~28. 

  • 加载中
    1. [1]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    2. [2]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    3. [3]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    4. [4]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    5. [5]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    6. [6]

      Bizhu ShaoHuijun DongYunnan GongJianhua MeiFengshi CaiJinbiao LiuDichang ZhongTongbu Lu . Metal-Organic Framework-Derived Nickel Nanoparticles for Efficient CO2 Electroreduction in Wide Potential Windows. Acta Physico-Chimica Sinica, 2024, 40(4): 2305026-0. doi: 10.3866/PKU.WHXB202305026

    7. [7]

      Ran HUOZhaohui ZHANGXi SULong CHEN . Research progress on multivariate two dimensional conjugated metal organic frameworks. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2063-2074. doi: 10.11862/CJIC.20240195

    8. [8]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    11. [11]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Yinwu Su Xuanwen Zheng Jianghui Du Boda Li Tao Wang Zhiyan Huang . Green Synthesis of 1,3-Dibromoacetone Using Halogen Exchange Method: Recommending a Basic Organic Synthesis Teaching Experiment. University Chemistry, 2024, 39(5): 307-314. doi: 10.3866/PKU.DXHX202311092

    14. [14]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    15. [15]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    16. [16]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    17. [17]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    18. [18]

      CCS Chemistry 综述推荐│绿色氧化新思路:光/电催化助力有机物高效升级

      . CCS Chemistry, 2025, 7(10.31635/ccschem.024.202405369): -.

    19. [19]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    20. [20]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

Metrics
  • PDF Downloads(36)
  • Abstract views(2401)
  • HTML views(377)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return