Citation: Siyu Long, Xianglin Pei, Dan Luo, Hai Fu, Wei Gong. Progress in the Synthesis and Application of Ruthenium-Based Catalysts[J]. Chemistry, ;2021, 84(2): 120-128. shu

Progress in the Synthesis and Application of Ruthenium-Based Catalysts

Figures(6)

  • Ruthenium catalysts are emerging noble metal catalysts in recent years. Their supported catalysts have many advantages, such as low cost, recyclability and good catalytic performance, which has attracted extensive attention of researchers. The synthesis and application of supported ruthenium based catalysts in ammonia synthesis, hydrogenation and oxidation were reviewed. The support and promoters, preparation methods and catalytic performance in the reaction process were mainly described, and the existing problems in current reactions were summarized. Finally, the urgent problems to be solved at present and the main development trend in the future were proposed.
  • 加载中
    1. [1]

      Hoffer B W, Crezee E, Mooijman P R M, et al. Catal. Today, 2003, 79: 35~41.

    2. [2]

      Scholl M, Ding S, Lee C W, et al. Org. Lett., 1999, 1(6): 953~956.

    3. [3]

      Abe H, Niwa Y, Kitano M, et al. J. Phys. Chem. C, 2017, 121(38): 20900~20904.

    4. [4]

      Aika K I, Takano T, Murata S. J. Catal., 1992, 136(1): 126~140.

    5. [5]

    6. [6]

      Nguyen S T, Johnson L K, Grubbs R H. J. Am. Chem. Soc., 1992, 114(10): 3974~3975.

    7. [7]

      Schwab P, Grubbs R H, Ziller J W. J. Am. Chem. Soc., 1996, 118(1): 100~110.

    8. [8]

      Schwab P, France M B, Ziller J W, et al. Angew. Chem. Int. Ed., 1995, 34(18): 2039~2041.

    9. [9]

      Boeda F, Bantreil X, Hervé C, et al. Adv. Synth. Catal., 2008, 350(18): 2959~2966.

    10. [10]

      Monsaert S, Drozdzak R, Dragutan V, et al. Eur. J. Inorg. Chem., 2008, 3: 432~440.

    11. [11]

      Taubmann C, Tosh E, Ofele K, et al. J. Oreanomet. Chem., 2008, 693(13): 2231~2236.

    12. [12]

      Lozano-Vila A M, Monsaert S, Bajek A, et al. Chem. Rev., 2010, 110(8): 4865~4909.

    13. [13]

      Halbach T S, Mix S, Fischer D, et al. J. Org. Chem., 2005, 70(12): 4687~4694.

    14. [14]

      Fischer D, Blechert S. Adv. Synth. Catal., 2005, 347(2): 1329~1332.

    15. [15]

      Chen S W, Zhang Z C, Zhai N N, et al. Tetrahedron, 2015, 71(4): 648~653.

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Kowalczyk Z, Sentek J, Jodzis S, et al. Carbon, 1996, 34(3): 403~409.

    22. [22]

      Zhong Z H, Aika K I. J. Catal., 1998, 280(1): 183~188.

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Carbajo M, Rivas F J, Beltrán F J, et al. Ozone-Sci. Eng., 2006, 28(4): 229~235.

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

      Aika K, Hori H, Ozaki A. J. Catal., 1972, 27(3): 424~431.

    34. [34]

    35. [35]

      Goethel P J, Yang R T. J. Catal., 1988, 111: 220~226.

    36. [36]

      Smil V. Nature, 1999, 400: 415.

    37. [37]

    38. [38]

    39. [39]

    40. [40]

      Wang Z Q, Ma Y C, Lin J X. J. Mol. Catal. A, 2013, 378: 307~313.

    41. [41]

      Aika K I, Hori H, Ozaki A. J. Catal., 1972, 27(3): 424~431.

    42. [42]

      Urabe K, Aika K I, Ozaki A. J. Catal., 1976, 38(1): 430~434.

    43. [43]

      Murata S, Aika K I, Onishi T. Chem. Lett., 1990, 19(7): 1067~1068.

    44. [44]

      Kowalczyk Z, Jodzis S, Sentek J, et al. Appl. Catal. A, 1996, 138(24): 83~91.

    45. [45]

      Rossetti I, Pernicone N, Forni L. Appl. Catal. A, 2001, 208: 271.

    46. [46]

      Kowalczyk Z, Sentek J, Jodzis S, et al. Catal. Lett., 1996, 34(3): 403~409.

    47. [47]

    48. [48]

    49. [49]

    50. [50]

      Yang X L, Tang L P, Xia C G, et al. J. Mol. Catal., 2012, 26(1): 1~9.

    51. [51]

      Ponec V. Recul des Travaux Chimiques des Pays-Bas, 1996, 115: 11~12.

    52. [52]

      Ponec V. Catal. Rev., 1978, 18(6): 151~171.

    53. [53]

      Murata S, Aika K I. Appl. Catal. A, 1992, 82: 1~12.

    54. [54]

      Renda S, Ricca A, Palma V. Appl. Energ., 2020, 279: 115767.

    55. [55]

      Moggi P, Albanesi G, Predieri G, et al. Appl. Catal. A, 1995, 123(1): 145~159.

    56. [56]

      Makoto S, Masahiro I, Jun I, et al. Catal. Lett., 2006, 106(3/4): 107~110.

    57. [57]

    58. [58]

    59. [59]

    60. [60]

      Yan L L, Liu J, Wang X Z, et al. Appl. Surf. Sci., 2020, 526: 146631.

    61. [61]

      Ahsan J, Seong-Hoon K, Prakash N J, et al. J. CO2 Util., 2020, 35: 245~255.

    62. [62]

      Gunniya H G, Sudakar P, Kwangho P, et al. ChemSusChem, 2020, 13(7): 1735~1739.

    63. [63]

      Hartog F, Zwietering P. J. Catal., 1963, 2(1): 79~81.

    64. [64]

    65. [65]

    66. [66]

      Shi X F, Xing B, Pan D H, et al. ChemistrySelect, 2020, 5(13): 4040~4045.

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

      Katona T, Guczi L, Somorjai G A. J. Catal., 1992, 135: 434~443.

    72. [72]

      Somorjai G A, Beaumont S K. Top. Catal., 2015, 58(10/11): 560~572.

    73. [73]

      Mieher W D, Ho W. Surf. Sci., 1995, 322: 151~167.

    74. [74]

    75. [75]

      Kawi S, Liu S Y, Shen S C. Catal. Today, 2001, 68: 237~244.

    76. [76]

    77. [77]

    78. [78]

      Lv L R, Wang S, Ding Y, et al. Chemosphere, 2020, 57: 127249.

    79. [79]

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    4. [4]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    8. [8]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    9. [9]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    13. [13]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    14. [14]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    15. [15]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    16. [16]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    17. [17]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    18. [18]

      Ke QIAOYanlin LIShengli HUANGGuoyu YANG . Advancements in asymmetric catalysis employing chiral iridium (ruthenium) complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2091-2104. doi: 10.11862/CJIC.20240265

    19. [19]

      Lutian ZhaoYangge GuoLiuxuan LuoXiaohui YanShuiyun ShenJunliang Zhang . Electrochemical Synthesis for Metallic Nanocrystal Electrocatalysts: Principle, Application and Challenge. Acta Physico-Chimica Sinica, 2024, 40(7): 2306029-0. doi: 10.3866/PKU.WHXB202306029

    20. [20]

      Yu Dai Xueting Sun Haoyu Wu Naizhu Li Guoe Cheng Xiaojin Zhang Fan Xia . Determination of the Michaelis Constant for Gold Nanozyme-Catalyzed Decomposition of Hydrogen Peroxide. University Chemistry, 2025, 40(5): 351-356. doi: 10.12461/PKU.DXHX202407052

Metrics
  • PDF Downloads(141)
  • Abstract views(4853)
  • HTML views(2462)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return