Citation: Siyu Long, Xianglin Pei, Dan Luo, Hai Fu, Wei Gong. Progress in the Synthesis and Application of Ruthenium-Based Catalysts[J]. Chemistry, ;2021, 84(2): 120-128. shu

Progress in the Synthesis and Application of Ruthenium-Based Catalysts

Figures(6)

  • Ruthenium catalysts are emerging noble metal catalysts in recent years. Their supported catalysts have many advantages, such as low cost, recyclability and good catalytic performance, which has attracted extensive attention of researchers. The synthesis and application of supported ruthenium based catalysts in ammonia synthesis, hydrogenation and oxidation were reviewed. The support and promoters, preparation methods and catalytic performance in the reaction process were mainly described, and the existing problems in current reactions were summarized. Finally, the urgent problems to be solved at present and the main development trend in the future were proposed.
  • 加载中
    1. [1]

      Hoffer B W, Crezee E, Mooijman P R M, et al. Catal. Today, 2003, 79: 35~41.

    2. [2]

      Scholl M, Ding S, Lee C W, et al. Org. Lett., 1999, 1(6): 953~956.

    3. [3]

      Abe H, Niwa Y, Kitano M, et al. J. Phys. Chem. C, 2017, 121(38): 20900~20904.

    4. [4]

      Aika K I, Takano T, Murata S. J. Catal., 1992, 136(1): 126~140.

    5. [5]

    6. [6]

      Nguyen S T, Johnson L K, Grubbs R H. J. Am. Chem. Soc., 1992, 114(10): 3974~3975.

    7. [7]

      Schwab P, Grubbs R H, Ziller J W. J. Am. Chem. Soc., 1996, 118(1): 100~110.

    8. [8]

      Schwab P, France M B, Ziller J W, et al. Angew. Chem. Int. Ed., 1995, 34(18): 2039~2041.

    9. [9]

      Boeda F, Bantreil X, Hervé C, et al. Adv. Synth. Catal., 2008, 350(18): 2959~2966.

    10. [10]

      Monsaert S, Drozdzak R, Dragutan V, et al. Eur. J. Inorg. Chem., 2008, 3: 432~440.

    11. [11]

      Taubmann C, Tosh E, Ofele K, et al. J. Oreanomet. Chem., 2008, 693(13): 2231~2236.

    12. [12]

      Lozano-Vila A M, Monsaert S, Bajek A, et al. Chem. Rev., 2010, 110(8): 4865~4909.

    13. [13]

      Halbach T S, Mix S, Fischer D, et al. J. Org. Chem., 2005, 70(12): 4687~4694.

    14. [14]

      Fischer D, Blechert S. Adv. Synth. Catal., 2005, 347(2): 1329~1332.

    15. [15]

      Chen S W, Zhang Z C, Zhai N N, et al. Tetrahedron, 2015, 71(4): 648~653.

    16. [16]

    17. [17]

    18. [18]

    19. [19]

    20. [20]

    21. [21]

      Kowalczyk Z, Sentek J, Jodzis S, et al. Carbon, 1996, 34(3): 403~409.

    22. [22]

      Zhong Z H, Aika K I. J. Catal., 1998, 280(1): 183~188.

    23. [23]

    24. [24]

    25. [25]

    26. [26]

    27. [27]

    28. [28]

      Carbajo M, Rivas F J, Beltrán F J, et al. Ozone-Sci. Eng., 2006, 28(4): 229~235.

    29. [29]

    30. [30]

    31. [31]

    32. [32]

    33. [33]

      Aika K, Hori H, Ozaki A. J. Catal., 1972, 27(3): 424~431.

    34. [34]

    35. [35]

      Goethel P J, Yang R T. J. Catal., 1988, 111: 220~226.

    36. [36]

      Smil V. Nature, 1999, 400: 415.

    37. [37]

    38. [38]

    39. [39]

    40. [40]

      Wang Z Q, Ma Y C, Lin J X. J. Mol. Catal. A, 2013, 378: 307~313.

    41. [41]

      Aika K I, Hori H, Ozaki A. J. Catal., 1972, 27(3): 424~431.

    42. [42]

      Urabe K, Aika K I, Ozaki A. J. Catal., 1976, 38(1): 430~434.

    43. [43]

      Murata S, Aika K I, Onishi T. Chem. Lett., 1990, 19(7): 1067~1068.

    44. [44]

      Kowalczyk Z, Jodzis S, Sentek J, et al. Appl. Catal. A, 1996, 138(24): 83~91.

    45. [45]

      Rossetti I, Pernicone N, Forni L. Appl. Catal. A, 2001, 208: 271.

    46. [46]

      Kowalczyk Z, Sentek J, Jodzis S, et al. Catal. Lett., 1996, 34(3): 403~409.

    47. [47]

    48. [48]

    49. [49]

    50. [50]

      Yang X L, Tang L P, Xia C G, et al. J. Mol. Catal., 2012, 26(1): 1~9.

    51. [51]

      Ponec V. Recul des Travaux Chimiques des Pays-Bas, 1996, 115: 11~12.

    52. [52]

      Ponec V. Catal. Rev., 1978, 18(6): 151~171.

    53. [53]

      Murata S, Aika K I. Appl. Catal. A, 1992, 82: 1~12.

    54. [54]

      Renda S, Ricca A, Palma V. Appl. Energ., 2020, 279: 115767.

    55. [55]

      Moggi P, Albanesi G, Predieri G, et al. Appl. Catal. A, 1995, 123(1): 145~159.

    56. [56]

      Makoto S, Masahiro I, Jun I, et al. Catal. Lett., 2006, 106(3/4): 107~110.

    57. [57]

    58. [58]

    59. [59]

    60. [60]

      Yan L L, Liu J, Wang X Z, et al. Appl. Surf. Sci., 2020, 526: 146631.

    61. [61]

      Ahsan J, Seong-Hoon K, Prakash N J, et al. J. CO2 Util., 2020, 35: 245~255.

    62. [62]

      Gunniya H G, Sudakar P, Kwangho P, et al. ChemSusChem, 2020, 13(7): 1735~1739.

    63. [63]

      Hartog F, Zwietering P. J. Catal., 1963, 2(1): 79~81.

    64. [64]

    65. [65]

    66. [66]

      Shi X F, Xing B, Pan D H, et al. ChemistrySelect, 2020, 5(13): 4040~4045.

    67. [67]

    68. [68]

    69. [69]

    70. [70]

    71. [71]

      Katona T, Guczi L, Somorjai G A. J. Catal., 1992, 135: 434~443.

    72. [72]

      Somorjai G A, Beaumont S K. Top. Catal., 2015, 58(10/11): 560~572.

    73. [73]

      Mieher W D, Ho W. Surf. Sci., 1995, 322: 151~167.

    74. [74]

    75. [75]

      Kawi S, Liu S Y, Shen S C. Catal. Today, 2001, 68: 237~244.

    76. [76]

    77. [77]

    78. [78]

      Lv L R, Wang S, Ding Y, et al. Chemosphere, 2020, 57: 127249.

    79. [79]

  • 加载中
    1. [1]

      Zhenxing Liu Jiaen Hu Zishi Cheng Xinqi Hao . 基础有机化学教学中烯烃的氧化反应. University Chemistry, 2025, 40(6): 139-144. doi: 10.12461/PKU.DXHX202408107

    2. [2]

      Lewang YuanYaoyao PengZong-Jie GuanYu Fang . Insights into the development of 2D covalent organic frameworks as photocatalysts in organic synthesis. Acta Physico-Chimica Sinica, 2025, 41(8): 100086-0. doi: 10.1016/j.actphy.2025.100086

    3. [3]

      Kangjuan ChengChunxiao LiuYoupeng WangQiu JiangTingting ZhengXu LiChuan Xia . Design of noble metal catalysts and reactors for the electrosynthesis of hydrogen peroxide. Acta Physico-Chimica Sinica, 2025, 41(10): 100112-0. doi: 10.1016/j.actphy.2025.100112

    4. [4]

      Hui-Ying ChenHao-Lin ZhuPei-Qin LiaoXiao-Ming Chen . Integration of Ru(Ⅱ)-Bipyridyl and Zinc(Ⅱ)-Porphyrin Moieties in a Metal-Organic Framework for Efficient Overall CO2 Photoreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306046-0. doi: 10.3866/PKU.WHXB202306046

    5. [5]

      Zelong LIANGShijia QINPengfei GUOHang XUBin ZHAO . Synthesis and electrocatalytic CO2 reduction performance of metal-organic framework catalysts loaded with silver particles. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 165-173. doi: 10.11862/CJIC.20240409

    6. [6]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    7. [7]

      Qinhui GuanYuhao GuoNa LiJing LiTingjiang Yan . Molecular sieve-mediated indium oxide catalysts for enhancing photocatalytic CO2 hydrogenation. Acta Physico-Chimica Sinica, 2025, 41(11): 100133-0. doi: 10.1016/j.actphy.2025.100133

    8. [8]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    9. [9]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    11. [11]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    12. [12]

      Lili Jiang Shaoyu Zheng Xuejiao Liu Xiaomin Xie . Copper-Catalyzed Oxidative Coupling Reactions for the Synthesis of Aryl Sulfones: A Fundamental and Exploratory Experiment for Undergraduate Teaching. University Chemistry, 2025, 40(7): 267-276. doi: 10.12461/PKU.DXHX202408004

    13. [13]

      Yan KongWei WeiLekai XuChen Chen . Electrochemical Synthesis of Organonitrogen Compounds from N-integrated CO2 Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2307049-0. doi: 10.3866/PKU.WHXB202307049

    14. [14]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    15. [15]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    16. [16]

      Jiapei Zou Junyang Zhang Xuming Wu Cong Wei Simin Fang Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081

    17. [17]

      Ying Chen Ronghua Yan Weiyan Yin . Research Progress on the Synthesis of Metal Single-Atom Catalysts and Their Applications in Electrocatalytic Hydrogen Evolution Reactions. University Chemistry, 2025, 40(9): 344-353. doi: 10.12461/PKU.DXHX202503066

    18. [18]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    19. [19]

      Wuxin BaiQianqian ZhouZhenjie LuYe SongYongsheng Fu . Co-Ni Bimetallic Zeolitic Imidazolate Frameworks Supported on Carbon Cloth as Free-Standing Electrode for Highly Efficient Oxygen Evolution. Acta Physico-Chimica Sinica, 2024, 40(3): 2305041-0. doi: 10.3866/PKU.WHXB202305041

    20. [20]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

Metrics
  • PDF Downloads(147)
  • Abstract views(5455)
  • HTML views(2728)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return