Citation: Chen Ting, Zhu Zhiliang. Research Progress in Arsenic Removal Technology of Iron-Based Water Treatment Materials[J]. Chemistry, ;2018, 81(10): 880-889. shu

Research Progress in Arsenic Removal Technology of Iron-Based Water Treatment Materials

  • Corresponding author: Zhu Zhiliang, zzl@tongji.edu.cn
  • Received Date: 23 April 2018
    Accepted Date: 15 July 2018

Figures(1)

  • Arsenic in the natural environment is considered as one of the most serious environmental threats in the world. Long-term exposure to arsenic from drinking water can cause various diseases. Therefore, there is an urgent need to develop economically effective arsenic removal technology. Iron-based water treatment materials have attracted more attention on arsenic removal due to its good affinity to arsenic, strong reactivity on the surface, low cost, easy preparation and recycling. This paper summarizes the progress in arsenic removal technology by iron-based materials, such as ferric (hydr) oxide, zero-valent iron, iron-based multi-mental oxide and their composites. Possible influence factors and mechanisms of arsenic removal in aqueous solution by different iron-based water treatment materials were discussed in details. At the same time, the influence factors of arsenic desorption and the toxicity assessment of the above mentioned materials were summarized. Finally, the main problems about arsenic removal existed in present research are put forward. The prospects for the further development of iron-based water treatment materials for arsenic removal are also discussed.
  • 加载中
    1. [1]

      P Ravenscroft, H Brammer, K Richards. Arsenic Pollution: A Global Synthesis. Chichester, UK: Wiley-Blackwell, 2009.

    2. [2]

      T Pal, P K Mukherjee, S Sengupta et al. Gondwana Res., 2002, 5(2): 501~512. 

    3. [3]

      M Berg, C Stengel, T K Pham et al. Sci. Total Environ., 2007, 372(2~3): 413~425. 

    4. [4]

      H Zhang, D S Ma, X X Hu. Environ. Geol., 2002, 41(6): 638~643. 

    5. [5]

      J Gurung, H Ishiga, M S Khadka. Environ. Geol., 2005, 49(1): 98~113. 

    6. [6]

      S Fendorf, H A Michael, A Geen. Science, 2010, 328(5982): 1123~1127. 

    7. [7]

      P Kay. Area, 2011, 43(1): 118~119. 

    8. [8]

       

    9. [9]

      B K Mandal, K T Suzuki. Talanta, 2002, 58(1): 201~235. 

    10. [10]

      X P Liu, W F Zhang, Y N Hu et al. Chemosphere, 2015, 119: 273~281. 

    11. [11]

      T V Nguyen, S Vigneswaran, H H Ngo et al. Sep. Purif. Technol., 2008, 61(1): 44~50. 

    12. [12]

      Y X Jiang, X C Zeng, X T Fan et al. Ecotoxicol. Environ. Safety, 2015, 122: 198~204. 

    13. [13]

      M M Rahman, J C Ng, R Naidu. Environ. Geochem. Health, 2009, 31: 189~200. 

    14. [14]

      D Mohan, C U Pittman. J. Hazard. Mater., 2007, 142(1~2): 1~53. 

    15. [15]

      T Budinova, D Savova, B Tsyntsarski et al. Appl. Surf. Sci., 2009, 255(8): 4650~4657. 

    16. [16]

      Y H Kim, C M Kim, I H Choi et al. Environ. Sci. Technol., 2004, 38(3): 924~931. 

    17. [17]

      T M Suzuki, J O Bomani, H Matsunaga et al. React. Funct. Polym., 2000, 43(1~2): 165~172. 

    18. [18]

      K R Sharma. Chem. Res. Toxicol., 2003, 16(12): 1684.

    19. [19]

      Y L Wang, S F Wang, X Wang et al. Water Air Soil Pollut., 2016, 227(8): 257. 

    20. [20]

      M Hasanzadeh, F Farajbakhsh, N Shadjou et al. Environ. Technol., 2015, 36(1): 36~44. 

    21. [21]

      M Salim, Y Munekage. Int. J. Environ. Res., 2009, 3(1): 13~22. 

    22. [22]

      V M Boddu, K Abburi, J L Talbott et al. Water Res., 2008, 42(3): 633~642. 

    23. [23]

      F Z Mou, J G Guan, H R Ma et al. ACS Appl. Mater. Interf., 2012, 4(8): 3987~3993. 

    24. [24]

      Z M Ren, G S Zhang, J P Chen. J. Colloid Interf. Sci., 2011, 358(1): 230~237. 

    25. [25]

      G S Zhang, Z M Ren, X W Zhang et al. Water Res., 2013, 47(12): 4022~4031. 

    26. [26]

      A Gupta, M Yunus, N Sankararamakrishnan. Chemosphere, 2012, 86(2): 150~155. 

    27. [27]

      V Chandra, J Park, Y Chun et al. ACS Nano, 2010, 4(7): 3979~3986. 

    28. [28]

      L C Roberts, S J Hug, T Ruettimann et al. Environ. Sci. Technol., 2004, 38(1): 307~315. 

    29. [29]

      G Z Nie, J Wang, B C Pan et al. Sci. China Chem., 2015, 58(4): 722~730. 

    30. [30]

      X L You, D Guay, A Farran et al. J. Chem. Technol. Biotechnol., 2016, 91(3): 693~704. 

    31. [31]

      Y X Zhang, Y Jia. Appl. Surf. Sci., 2014, 290: 102~106. 

    32. [32]

      Y Jia, T Luo, X Y Yu et al. RSC Adv., 2013, 3(36): 15805~15811. 

    33. [33]

      I Andjelkovic, D N H Tran, S Kabiri et al. ACS Appl. Mater. Interf., 2015, 7(18): 9758~9766. 

    34. [34]

      M C S Faria, R S Rosemberg, C A Bomfeti et al. Chem. Eng. J., 2014, 237: 47~54. 

    35. [35]

      S Lin, D N Lu, Z Liu. Chem. Eng. J., 2012, 211: 46~52.

    36. [36]

      Z H Wei, R G Xing, X Zhang et al. ACS Appl. Mater. Interf., 2013, 5(3): 598~604. 

    37. [37]

      T Wang, W C Yang, T T Song et al. RSC Adv., 2015, 5(62): 50011~50018. 

    38. [38]

      Y Jia, H M Yu, L Wu et al. Anal. Chem., 2015, 87(12): 5866~5871. 

    39. [39]

      S A Baig, T T Sheng, C Sun et al. PloS One, 2014, 9(6): e100704. 

    40. [40]

      C T Yavuz, J T Mayo, W W Yu et al. Science, 2006, 314(5801): 964~967. 

    41. [41]

      T Wang, L Y Zhang, H Y Wang et al. ACS Appl. Mater. Interf., 2013, 5(23): 12449~12459. 

    42. [42]

      R Z Chen, C Y Zhi, H Yang et al. J. Colloid Interf. Sci., 2011, 359(1): 261~268. 

    43. [43]

      Z G Liu, F S Zhang, R Sasai. Chem. Eng. J., 2010, 160(1): 57~62. 

    44. [44]

      X B Luo, C C Wang, S L Luo et al. Chem. Eng. J., 2012, 187: 45~52. 

    45. [45]

      L Y Feng, M H Cao, X Y Ma et al. J. Hazard. Mater., 2012, 217: 439~446. 

    46. [46]

      L Q Guo, P R Ye, J Wang et al. J. Hazard. Mater., 2015, 298: 28~35. 

    47. [47]

      H Alijani, Z Shariatinia. Chemosphere, 2017, 171: 502~511. 

    48. [48]

      M Baikousi, Y Georgiou, C Daikopoulos et al. Carbon, 2015, 93: 636~647. 

    49. [49]

      F C Su, H J Zhou, Y X Zhang et al. J. Colloid Interf. Sci., 2016, 478: 421~429. 

    50. [50]

      C Trois, A Cibati. J. Environ. Chem. Eng., 2015, 3(1): 488~498. 

    51. [51]

      H J Zhu, Y F Jia, X Wu et al. J. Hazard. Mater., 2009, 172(2~3): 1591~1596. 

    52. [52]

      T H Bui, C Kim, S P Hong et al. Environ. Sci. Pollut. Res. Int., 2017, 24(31): 24235~24242. 

    53. [53]

      C Wang, H J Luo, Z L Zhang et al. J. Hazard. Mater., 2014, 268: 124~131. 

    54. [54]

      S Bhowmick, S Chakraborty, P Mondal et al. Chem. Eng. J., 2014, 243: 14~23. 

    55. [55]

      R P Liu, W X Gong, H C Lan et al. Sep. Purif. Technol., 2012, 92: 100~105. 

    56. [56]

      G S Zhang, J H Qu, H J Liu et al. Water Res., 2007, 41(9): 1921~1928. 

    57. [57]

      G L Di, Z L Zhu, H Zhang et al. Chem. Eng. J., 2017, 328: 141~151. 

    58. [58]

      H T Lu, Z L Zhu, H Zhang et al. ACS Appl. Mater. Interf., 2016, 8(38): 25343~25352. 

    59. [59]

      H T Lu, Z L Zhu, H Zhang et al. Water Air Soil Pollut., 2016, 227(4): 125. 

    60. [60]

      J Hong, Z L Zhu, H T Lu et al. Chem. Eng. J., 2014, 252: 267~274. 

    61. [61]

       

    62. [62]

      C H Liu, Y H Chuang, T Y Chen et al. Environ. Sci. Technol., 2015, 49(13): 7726~7734. 

    63. [63]

      S S Wang, B Gao, A R Zimmerman et al. Bioresour. Technol., 2015, 175: 391~395. 

    64. [64]

      X J Guo, Y H Du, F H Chen et al. J. Colloid Interf. Sci., 2007, 314(2): 427~433. 

    65. [65]

      M S H Mak, P Rao, I M C Lo. Water Res., 2009, 43(17): 4296~4304. 

    66. [66]

      F Fu, D D Dionysiou, H Liu. J Hazard. Mater., 2014, 267: 194~205. 

    67. [67]

      V Tanboonchuy, J C Hsu, N Grisdanurak et al. J Hazard. Mater., 2011, 186(2~3): 2123~2128. 

    68. [68]

       

    69. [69]

      C Wu, J W Tu, W Z Liu et al. Environ. Sci.-Nano, 2017, 4(7): 1544~1552. 

    70. [70]

      H W Sun, L Wang, R H Zhang et al. J. Hazard. Mater., 2006, 129(1~3): 297~303. 

    71. [71]

      H T Lu, Z L Zhu, H Zhang et al. Chem. Eng. J., 2015, 276: 365~375. 

    72. [72]

      A G Caporale, M Pigna, J J Dynes et al. J. Hazard. Mater., 2011, 198: 291~298. 

    73. [73]

      M L Polizzotto, C F Harvey, G C Li et al. Chem. Geol., 2006, 228(1~3): 97~111. 

    74. [74]

      A G Caporale, M Pigna, S M G G Azam et al. Chem. Eng. J., 2013, 225: 704~709. 

    75. [75]

      C Luengo, V Puccia, M Avena. J. Hazard. Mater., 2011, 186(2~3): 1713~1719. 

    76. [76]

      X G Meng, G P Korfiatis, C Y Jing et al. Environ. Sci. Technol., 2001, 35(17): 3476~3481. 

    77. [77]

      Y Masue, R H Loeppert, T Kramer et al. Environ. Sci. Technol., 2007, 41(3): 837~842. 

    78. [78]

      C Wang, H Jia, L Zhu et al. Sci. Total Environ., 2017, 598: 847~855. 

    79. [79]

      M Stefaniuk, P Oleszczuk, Y S Ok. Chem. Eng. J., 2016, 287: 618~632. 

    80. [80]

      Y S El-Temsah, E J Joner. Chemosphere, 2012, 89(1): 76~82. 

    81. [81]

      M Auffan, W Achouak, J Rose et al. Environ. Sci. Technol., 2008, 42(17): 6730~6735. 

  • 加载中
    1. [1]

      Gaofeng Zeng Shuyu Liu Manle Jiang Yu Wang Ping Xu Lei Wang . Micro/Nanorobots for Pollution Detection and Toxic Removal. University Chemistry, 2024, 39(9): 229-234. doi: 10.12461/PKU.DXHX202311055

    2. [2]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Preparation of Superhydrophobic Surfaces and Their Application in Oily Wastewater Treatment: Design of a Comprehensive Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(2): 34-40. doi: 10.3866/PKU.DXHX202307081

    3. [3]

      Zhangshu Wang Xin Zhang Jixin Han Xuebing Fang Xiufeng Zhao Zeyu Gu Jinjun Deng . Exploration and Design of Experimental Teaching on Ultrasonic-Enhanced Synergistic Treatment of Ternary Composite Flooding Produced Water. University Chemistry, 2024, 39(5): 116-124. doi: 10.3866/PKU.DXHX202310056

    4. [4]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    5. [5]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    6. [6]

      Wei Li Guoqiang Feng Ze Chang . Teaching Reform of X-ray Diffraction Using Synchrotron Radiation in Materials Chemistry. University Chemistry, 2024, 39(3): 29-35. doi: 10.3866/PKU.DXHX202308060

    7. [7]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    8. [8]

      Tianyang Yu Hao Wei . “Illness Enters through the Mouth”: A Brief Overview of Toxic Chemical Substances in Common Foods. University Chemistry, 2025, 40(7): 225-231. doi: 10.12461/PKU.DXHX202409083

    9. [9]

      Yuyao WangZhitao CaoZeyu DuXinxin CaoShuquan Liang . Research Progress of Iron-based Polyanionic Cathode Materials for Sodium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2406014-0. doi: 10.3866/PKU.WHXB202406014

    10. [10]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    11. [11]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Xin Zhou Zhi Zhang Yun Yang Shuijin Yang . A Study on the Enhancement of Photocatalytic Performance in C/Bi/Bi2MoO6 Composites by Ferroelectric Polarization: A Recommended Comprehensive Chemical Experiment. University Chemistry, 2024, 39(4): 296-304. doi: 10.3866/PKU.DXHX202310008

    14. [14]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    15. [15]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    16. [16]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    17. [17]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

    18. [18]

      Limin Shao Na Li . A Unified Equation Derived from the Charge Balance Equation for Constructing Acid-Base Titration Curve and Calculating Endpoint Error. University Chemistry, 2024, 39(11): 365-373. doi: 10.3866/PKU.DXHX202401086

    19. [19]

      Shuhui Li Xucen Wang Yingming Pan . Exploring the Role of Electrochemical Technologies in Everyday Life. University Chemistry, 2025, 40(3): 302-307. doi: 10.12461/PKU.DXHX202406059

    20. [20]

      Wenyan Dan Weijie Li Xiaogang Wang . The Technical Analysis of Visual Software ShelXle for Refinement of Small Molecular Crystal Structure. University Chemistry, 2024, 39(3): 63-69. doi: 10.3866/PKU.DXHX202302060

Metrics
  • PDF Downloads(10)
  • Abstract views(327)
  • HTML views(68)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return