Citation: WANG Gang, YU Guang-wei, XIE Sheng-yu, JIANG Ru-qing, WANG Yin. Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(5): 611-620. shu

Effect of co-pyrolysis of different plastics with sewage sludge on heavy metals in the biochar

  • Corresponding author: YU Guang-wei, gwyu@iue.ac.cn
  • Received Date: 10 December 2018
    Revised Date: 11 March 2019

    Fund Project: Key Project of Young Talent of the Institute of Urban Environment, Chinese Academy of Sciences IUEZD201402Industry Leading Key Projects of Fujian Province 2015H0044Strategic Priority Research Program of the Chinese Academy of Sciences XDA23020500The project was supported by Natural Science Foundation of Fujian Province (2019J01135), the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA23020500), the Industry Leading Key Projects of Fujian Province (2015H0044), the Key Project of Young Talent of the Institute of Urban Environment, Chinese Academy of Sciences ( IUEZD201402 ) and the China-Japanese Research Cooperative Program (2016YFE0118000)The project was supported by Natural Science Foundation of Fujian Province 2019J01135China-Japanese Research Cooperative Program 2016YFE0118000

Figures(5)

  • The experiments of sewage sludge (SS) co-pyrolysis with four kinds of plastics (PE, PP, PS and PVC) were carried out in a high temperature tubular furnace to obtain four kinds of biochar (SSCPE, SSCPP, SSCPS and SSCPVC), respectively. The contents, residual rates, BCR speciation, leaching toxicity and potential ecological risk assessment of heavy metals (Cr, Mn, Ni, Cu, Zn, As, Cd and Pb) in biochar were studied. The results show that the residues of heavy metals except Cd are reduced by adding different kinds of plastics during SS pyrolysis. Compared with the biochar (SSC) obtained by SS pyrolysis, the addition of PE, PP and PS can promote the transformation of heavy metals speciation in biochar to more stable fractions (F3+F4) and achieve the immobilization of heavy metals. The addition of PVC only promotes the immobilization of Cr and As in biochar, while exhibiting an obvious activation effect on other heavy metals. The concentrations of leaching heavy metals in four kinds of biochar are lower than the limit value of the identification standard for extraction (GB5085.3-2007), and the potential ecological risks of the four kinds of biochar are all in a slight level. This work provides a good theoretical support for the process of the cooperative disposal of SS and waste plastics.
  • 加载中
    1. [1]

      PENG Cheng-fa, XIAO Ting-xuan, LI Zhi-jian. Effects of pyrolysis temperature on structural properties of sludge-based biochar and its adsorption for heavy metals[J]. Res Environ Sci, 2017,30(10):1637-1644.  

    2. [2]

      FERNÁNDEZ J M, NIETO M A, LÓPEZDESÁ E G, GASCÓ G, MÓNDEZ A, PLAZA C. Carbon dioxide emissions from semi-arid soils amended with biochar alone or combined with mineral and organic fertilizers[J]. Sci Total Environ, 2014,482/483(1):1-7.  

    3. [3]

      RULKENS W. Sewage Sludge as a biomass resource for the production of energy:Overview and assessment of the various options[J]. Energy Fuels, 2008,22(1):9-15.  

    4. [4]

      JIN J W, WANG M Y, CAO Y C, WU S C, LIANG P, LI Y N, ZHANG J Y, WONG M H, SHAN S D, CHRISTIE P. Cumulative effects of bamboo sawdust addition on pyrolysis of sewage sludge:Biochar properties and environmental risk from metals[J]. Bioresour Technol, 2017,228:218-226.  

    5. [5]

      KISTLER R C, WIDMER F, BRUNNER P H. Behavior of chromium, nickel, copper, zinc, cadmium, mercury, and lead during the pyrolysis of sewage sludge[J]. Environ Sci Technol, 1987,21(7):704-708. doi: 10.1021/es00161a012

    6. [6]

      DEVI P, SAROHA A K. Risk analysis of pyrolyzed biochar made from paper mill effluent treatment plant sludge for bioavailability and eco-toxicity of heavy metals[J]. Bioresour Technol, 2014,162(162C):308-315.  

    7. [7]

      PINTO F, COSTA P, GULYURTLU I, CABRITA I. Pyrolysis of plastic wastes. 1. Effect of plastic waste composition on product yield[J]. J Anal Appl Pyrolysis, 1999,51(1/2):39-55.  

    8. [8]

      LETTIERI P, AL-SALEM S M. Thermochemical treatment of plastic solid waste[J]. J Cardiovasc Surg, 2011,10(4):314-319.

    9. [9]

      WILLIAMS P T, SLANEY E. Analysis of products from the pyrolysis and liquefaction of single plastics and waste plastic mixtures[J]. Resour Conserv Recycl, 2007,51(4):754-769. doi: 10.1016/j.resconrec.2006.12.002

    10. [10]

      SARKER M. Converting waste plastic to hydrocarbon fuel materials[J]. Energy Eng, 2011,108(2):35-43.  

    11. [11]

      UÇAR S, KARAGÖZ S, YANIK J, SAGLAM M, YUKSEL M. Copyrolysis of scrap tires with waste lubricant oil[J]. Fuel Process Technol, 2005,87(1):53-58. doi: 10.1016/j.fuproc.2005.06.001

    12. [12]

      THOMPSON R C, SWAN S H, MOORE C J, VOM SAAL F S. Our plastic age[J]. Philos Trans R Soc B, 2009,364(1526)1973. doi: 10.1098/rstb.2009.0054

    13. [13]

      YAMAMOTO T, YASUHARA A, SHIRAISHI H, NAKASUGI O. Bisphenol A in hazardous waste landfill leachates[J]. Chemosphere, 2001,42(4):415-418. doi: 10.1016/S0045-6535(00)00079-5

    14. [14]

      LI C X, WANG X D, ZHANG G Y, YU G W, LIN J J, WANG Y. Hydrothermal and alkaline hydrothermal pretreatments plus anaerobic digestion of sewage sludge for dewatering and biogas production:Bench-scale research and pilot-scale verification[J]. Water Res, 2017,117:49-57.  

    15. [15]

      WANG X D, LI C X, ZHANG B, LIN J J, CHI Q Q, WANG Y. Migration and risk assessment of heavy metals in sewage sludge during hydrothermal treatment combined with pyrolysis[J]. Bioresour Technol, 2016,221:560-567. doi: 10.1016/j.biortech.2016.09.069

    16. [16]

      LI C X, WANG X D, ZHANG G Y, LI J, LI Z, YU G, WANG Y W. A process combining hydrothermal pretreatment, anaerobic digestion and pyrolysis for sewage sludge dewatering and co-production of biogas and biochar:Pilot-scale verification[J]. Bioresour Technol, 2018,254:187-193.  

    17. [17]

      XIE Sheng-yu, YU Guang-wei, LI Jie, YOU Fu-tian, WANG Gang, WANG Yin, MA Jian-li, SHANG Xiao-fu. Effects of hydrothermal treatment coupled pyrolysis on heavy metals in solid products from sewage sludge[J]. J Environ Eng, 2018,12(7):2114-2122.  

    18. [18]

      LI Zhi-wei, WANG Xing-dong, LIN Jing-jiang, LU Jiang-yin, CHAO Huan-ping, WANG Yin. Transformation of nitrogen, phosphorus, potassium and heavy metals during sewage sludge biochar preparation[J]. J Environ Eng, 2016,10(3):1392-1399.  

    19. [19]

      YU G W, WANG Y, ZHANG X, TANG X D, LI J, YU Z, WANG X D, YOU F T. Influence of sludge and sludge biochar on the transfer of available heavy metals in soil[J]. J Mater Cycles Waste, 2016,42(1):814-823.  

    20. [20]

      LI J, YU G W, XIE S Y, PAN L J, LI C X, YOU F T, WANG Y. Immobilization of heavy metals in ceramsite produced from sewage sludge biochar[J]. Sci Total Environ, 2018,628/629:131-140. doi: 10.1016/j.scitotenv.2018.02.036

    21. [21]

      YU Guang-wei, LIAO Hong-qiang, QIAN Kai, LI Bao-qing, CAI Jiu-ju, LI Dong-tao. Disposal of waste plastics by coking processⅠ. Experiments of TG and 10g fixed-bed reactor[J]. J Fuel Chem Technol, 2004,32(1):23-26. doi: 10.3969/j.issn.0253-2409.2004.01.005 

    22. [22]

      YU Guang-wei, LIAO Hong-qiang, QIAN Kai, LI Dong-tao, CAI Jiu-ju. Disposal of waste plastics by coking processⅡ. 200kg coking-oven Experiment[J]. J Fuel Chem Technol, 2004,32(1):27-30. doi: 10.3969/j.issn.0253-2409.2004.01.006 

    23. [23]

      YU Guang-wei, WANG Yin, WANG Xing-dong, XING Zhen-jiao, LI Zhi-wei, LI Meng. Method and system for preparing carbon adsorbent material by mixing waste plastics with sludge: CN, 103951153A[P]. 2014-07-30.

    24. [24]

      SCOTT D S, CZERNIK S R, PISKORZ J, RADLEIN D S A G. Fast pyrolysis of plastic wastes[J]. Energy Fuels, 1990,4(4):407-411.  

    25. [25]

      SUNGUR A, SOYLAK M, OZCAN H. Investigation of heavy metal mobility and availability by the BCR sequential extraction procedure:Relationship between soil properties and heavy metals availability[J]. Chem Spec Bioavailability, 2014,26(4):219-230. doi: 10.3184/095422914X14147781158674

    26. [26]

      LI Jie, PAN Lan-jia, YU Guang-wei, WANG Yin, YOU Fu-tian, XIE Sheng-yu. Preparation of adsorption ceramsite derived from sludge biochar[J]. Environ Sci, 2017,38(9):3970-3978.  

    27. [27]

      HAKANSON L. An ecological risk index for aquatic pollution control:A sediment ecological approach[J]. Water Res, 1980,14(8):975-1001.  

    28. [28]

      LIU Jing-yong, SUN Shui-yu, CHEN Tao. Effects of adsorbents on partitioning and fixation of heavy metals in the incineration process of sewage sludge[J]. Environ Sci, 2013,34(3):1166-1173.  

    29. [29]

      YU Jie. The behavior and partitioning of heavy metals during thermal treatment of municipal solid waste[D]. Wuhan: Huazhong University of Science and Technology, 2013.

    30. [30]

      QIAN Ya-ping. Migration of Cr, Hg and Pb in Coal and Biomass Co-gasification[D]. Shanghai: East China University Of Science And Technology, 2013.

    31. [31]

      CHIANG K Y, WANG K S, LIN F L, CHU W T. Chloride effects on the speciation and partitioning of heavy metal during the municipal solid waste incineration process[J]. Sci Total Environ, 2010,203(2):129-140.  

    32. [32]

      SAQIB N, BÄCKSTRÖM M. Trace element partitioning in ashes from boilers firing pure wood or mixtures of solid waste with respect to fuel composition, chlorine content and temperature[J]. Waste Manage, 2014,34(12):2505-2519. doi: 10.1016/j.wasman.2014.08.025

    33. [33]

      ZHAO Jing-jing, ZHOU Shao-qi, CHEN An-an, LIN Yi-ming. Morphological analysis and ecological risk assessment on heavy metals in the activated carbon prepared from sewage sludge and peanut hull[J]. J Agro Environ Sci, 2012,31(11):2284-2289.

    34. [34]

      LIU Ya-na, GUO Xu-ming, ZHOU Ming, ZHU Shu-fa, MIAO Juan, HE Wen-li. Heavy metal speciation and its potential ecological risk assessment in sewage sludge of Luoyang[J]. J Environ Eng, 2017,11(2):1217-1222.  

    35. [35]

      HUANG H J, YUAN X Z. The migration and transformation behaviors of heavy metals during the hydrothermal treatment of sewage sludge[J]. Bioresour Technol, 2016,200:991-998.  

    36. [36]

      GUO Bo, XU Si-si, LI Ping, XU Zi-yi. Study on processing and application technologies of waste plastics[J]. China Popul Resour Environ, 2013,23(S2):408-411.  

    37. [37]

      FUENTES A, LLORÉNS M, SÁEZ J, AGUILAR M A I, ORTUÑO J F, MESEGUER V F. Comparative study of six different sludges by sequential speciation of heavy metals[J]. Bioresour Technol, 2008,99(3):517-525. doi: 10.1016/j.biortech.2007.01.025

    38. [38]

      SHI W S, LIU C G, SHU Y J, FENG C P, LEI Z F, ZHANG Z Y. Synergistic effect of rice husk addition on hydrothermal treatment of sewage sludge:Fate and environmental risk of heavy metals[J]. Bioresour Technol, 2013,149(12):496-502.  

    39. [39]

      ZHANG Da-lei, LI Gong-wei, LI Wei-hua, KONG Hai-nan, SUN Ying-jie. Experimental study on reduction of Cr(VI) by co-pyrolysis of polyethylene/chromite ore processing residue[J]. China Environ Sci, 2017,37(5):1852-1857. doi: 10.3969/j.issn.1000-6923.2017.05.031

    40. [40]

      TANG P, ZHOU Y C, MIAO Z. Immobilization of heavy metals in sludge using phosphoric acid and monobasic calcium phosphate[J]. J Zhenjiang Univ-Sci A(Appl Phys Eng), 2013,14(3):177-186.  

    41. [41]

      POOLE D, ARGENT B B, SHARIFI V N, SWITHENBANK J. Prediction of the distribution of alkali and trace elements between the condensed and gaseous phases in a municipal solid waste incinerator[J]. Fuel, 2008,87(7):1318-1333.  

    42. [42]

      GB5085.3-2007, Identification standards for hazardous wastes-Identification for extraction toxicity[S].

  • 加载中
    1. [1]

      Xiaoyu Cao Wenchang Ke Xin Tian Luxuan Lin Yiru Zhuo Xinhang Li Dongxu Chen ChunhuiWu Yu Pei Jiaxing Yin Xiaohui Zhang Xuegao Qin Jiangyi Zhou Baoqiang Su Pingping Zhu . Polymers from the Perspective of Students: A Debate on “Is White Pollution the Fault of Plastics?”. University Chemistry, 2025, 40(4): 160-165. doi: 10.12461/PKU.DXHX202412106

    2. [2]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

    3. [3]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    4. [4]

      Liuchuang Zhao Wenbo Chen Leqian Hu . Discussion on Improvement of Teaching Contents about Common Evaluation Parameters in Analytical Chemistry. University Chemistry, 2024, 39(2): 379-391. doi: 10.3866/PKU.DXHX202308079

    5. [5]

      Tongtong Zhao Yan Wang Shiyue Qin Liang Xu Zhenhua Li . New Experiment Development: Upgrading and Regeneration of Discarded PET Plastic through Electrocatalysis. University Chemistry, 2024, 39(3): 308-315. doi: 10.3866/PKU.DXHX202309003

    6. [6]

      Yadan Luo Hao Zheng Xin Li Fengmin Li Hua Tang Xilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-. doi: 10.1016/j.actphy.2025.100052

    7. [7]

      Jingzhuo Tian Chaohong Guan Haobin Hu Enzhou Liu Dongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-. doi: 10.1016/j.actphy.2025.100068

    8. [8]

      Yang Chen Xiuying Wang Nengqin Jia . Ideological and Political Design, Blended Teaching Practice of Physical Chemistry Experiment: Pb-Sn Binary Metal Phase Diagram. University Chemistry, 2025, 40(3): 223-229. doi: 10.12461/PKU.DXHX202405184

    9. [9]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    10. [10]

      Yongming Zhu Huili Hu Yuanchun Yu Xudong Li Peng Gao . Construction and Practice on New Form Stereoscopic Textbook of Electrochemistry for Energy Storage Science and Engineering: Taking Basic Course of Electrochemistry as an Example. University Chemistry, 2024, 39(8): 44-47. doi: 10.3866/PKU.DXHX202312086

    11. [11]

      Yifeng Xu Jiquan Liu Bin Cui Yan Li Gang Xie Ying Yang . “Xiao Li’s School Adventures: The Working Principles and Safety Risks of Lithium-ion Batteries”. University Chemistry, 2024, 39(9): 259-265. doi: 10.12461/PKU.DXHX202404009

    12. [12]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    13. [13]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    14. [14]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    15. [15]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    16. [16]

      Jianmin Hao Ruifeng Wu Ying Wang Yijia Bai Xuechuan Gao Yuying Du . Reform and Practice of Physical Chemistry Course Based on Enhanced Process Assessment and Evaluation. University Chemistry, 2024, 39(8): 78-83. doi: 10.3866/PKU.DXHX202311103

    17. [17]

      Shuyong Zhang Wenfeng Jiang Changsheng Lu Genrong Qiang Yongmei Liu Xiangyang Tang Dongcheng Liu Lili Zhang . Suggestions on Construction and Evaluation Standards for First-Class Chemical Experiment Teaching. University Chemistry, 2025, 40(5): 9-14. doi: 10.12461/PKU.DXHX202502114

    18. [18]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    19. [19]

      Zhuomin Zhang Hanbing Huang Liangqiu Lin Jingsong Liu Gongke Li . Course Construction of Instrumental Analysis Experiment: Surface-Enhanced Raman Spectroscopy for Rapid Detection of Edible Pigments. University Chemistry, 2024, 39(2): 133-139. doi: 10.3866/PKU.DXHX202308034

    20. [20]

      Zhenli Sun Ning Wang Kexin Lin Qin Dai Yufei Zhou Dandan Cao Yanfeng Dang . Visual Analysis of Hotspots and Development Trends in Analytical Chemistry Education Reform. University Chemistry, 2024, 39(11): 57-64. doi: 10.12461/PKU.DXHX202403095

Metrics
  • PDF Downloads(10)
  • Abstract views(878)
  • HTML views(163)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return