Citation: Zhao Jiawei, Zheng Zhilin, He Xiaowei, Geng Wangchang. Research Progress in Hydrothermal Synthesis of Different Dimensions Co3O4 Nanomaterials[J]. Chemistry, ;2017, 80(12): 1093-1103. shu

Research Progress in Hydrothermal Synthesis of Different Dimensions Co3O4 Nanomaterials

  • Corresponding author: Geng Wangchang, w.geng@nwpu.edu.cn
  • Received Date: 28 May 2017
    Accepted Date: 11 July 2017

Figures(16)

  • Crystal structure and surface characteristics of transition metal oxide Co3O4 are closely related to its morphology, size and microstructure. In this paper, different morphology Co3O4 nanomaterial could be divided into several dimensions through scale, including 0D of nanospheres, cubes, polyhedral, 1D of nanowires, nanorods, nanotubes, nanocolumns and others, 2D of nanometer film, nano flakes and 3D of microscale superstructure constituted by nano-element such as urchin, micron ball etc. We discussed the influencing factors in formation of morphology, focused on the hydrothermal synthesis process and summarized the possible mechanism, to facilitate the deeply understanding of preparation of different dimension materials. Accordingly, it would provide a guidance for the synthesis of materials with specific dimension and morphology.
  • 加载中
    1. [1]

      X Xie, Y Li, Z Q Liu et al. Nature, 2009, 458:746~749. 

    2. [2]

      P Poizot, S Laruelle, S Grugeon et al. Nature, 2000, 407:496~499. 

    3. [3]

      L Bao, T Li, S Chen et al. Small, 2017, 13(5):1602077. 

    4. [4]

      N Rinaldi-Montes, J González-López, Á Fernández-González et al. Ceram. Int., 2017, 43:10889~10894. 

    5. [5]

      H Hu, B Guan, B Xia et al. J. Am. Chem. Soc., 2015, 137:5590~5595. 

    6. [6]

      D Zhang, C Jiang, P Li et al. ACS Appl. Mater. Interf., 2017, 9:6462~6471. 

    7. [7]

      Y Gong, F Gong, C Wang et al. RSC Adv., 2015, 5:27266~27272. 

    8. [8]

      R Xu, H C Zeng. Langmuir, 2004, 20:9780~9790. 

    9. [9]

      D Su, S Dou, G Wang. Nano Res., 2014, 7:794~803. 

    10. [10]

      A C Nwanya, D Obi, R U Osuji et al. J. Solid State Electrochem., 2017, 21(9):2567~2576. 

    11. [11]

      D T Dam, J M Lee. ACS Appl. Mater. Interf., 2014, 6:20729~20737. 

    12. [12]

      N Bahlawane, P H T Ngamou, V Vannier et al. Phys. Chem. Chem. Phys., 2009, 11:9224~9232. 

    13. [13]

      R Edla, S Gupta, N Patel et al. Appl. Catal. A, 2016, 515:1~9. 

    14. [14]

      W Yao, Q Dai, Y Liu et al. ChemElectroChem, 2017, 4(1):230~235. 

    15. [15]

      R Manogowri, R M Mathelane, S Valanarasu et al. J. Mater. Sci.:Mater. Electron., 2016, 27:3860~3866. 

    16. [16]

      W H Ryu, T H Yoon, S H Song et al. Nano Lett., 2013, 13:4190~4197. 

    17. [17]

      W Zhao, Y Liu, H Li et al. Mater. Lett., 2008, 62:772~774. 

    18. [18]

      G C Luijkx, F van Rantwijk, H van Bekkum et al. Carbohyd. Res., 1995, 272:191~202. 

    19. [19]

      T He, D Chen, X Jiao et al. Langmuir, 2004, 20:8404~8408. 

    20. [20]

      Y Chen, Y Zhang, S Fu. Mater. Lett., 2007, 61:701~705. 

    21. [21]

      R Liu, Z Jiang, Q Liu et al. CrystEngComm, 2015, 17:4449~4454. 

    22. [22]

      H Zhou, B Lv, D Wu et al. CrystEngComm, 2013, 15:8337~8344. 

    23. [23]

      W Li, E Shi, W Zhong et al. J. Synth. Cryst., 1999, 28:117~125.

    24. [24]

      Y Liu, G Zhu, B Ge et al. CrystEngComm, 2012, 14:6264~6270. 

    25. [25]

      S E Skrabalak, Y Xia. ACS Nano, 2009, 3:10~15. 

    26. [26]

      M Kang, H Zhou, D Wu et al. CrystEngComm, 2016, 18:9299~9306. 

    27. [27]

      R Xu, H C Zeng. J. Phys. Chem. B, 2003, 107:926~930. 

    28. [28]

      J Feng, H C Zeng. Chem. Mater., 2003, 15:2829~2835. 

    29. [29]

      T He, D Chen, X Jiao et al. Chem. Mater., 2005, 17:4023~4030. 

    30. [30]

      J S Chen, T Zhu, Q H Hu et al. ACS Appl. Mater. Interf., 2010, 2:3628~3635. 

    31. [31]

      X Xiao, X Liu, H Zhao et al. Adv. Mater., 2012, 24:5762~5766. 

    32. [32]

      L Hu, Q Peng, Y Li. J. Am. Chem. Soc., 2008, 130:16136~16137. 

    33. [33]

      J Yang, T Sasaki. Cryst. Growth Design, 2010, 10:1233~1236. 

    34. [34]

      W E Mahmoud, F Al-Agel. J. Phys. Chem. Solids, 2011, 72:904~907. 

    35. [35]

      B Wang, T Zhu, H B Wu et al. Nanoscale, 2012, 4:2145~2149. 

    36. [36]

      X Xia, J Tu, Y Mai et al. J. Mater. Chem., 2011, 21:9319~9325. 

    37. [37]

      H Nguyen, S A El-Safty. J. Phys. Chem. C, 2011, 115:8466~8474. 

    38. [38]

      W Mei, J Huang, L Zhu et al. J. Mater. Chem., 2012, 22:9315~9321. 

    39. [39]

      Z Wen, L Zhu, W Mei et al. Sens. Actuat. B, 2013, 186:172~179. 

    40. [40]

      H Che, A Liu, J Hou et al. Mater. Res. Bull., 2014, 59:69~76. 

    41. [41]

      H Huang, W Zhu, X Tao et al. ACS Appl. Mater. Interf., 2012, 4:5974~5980. 

    42. [42]

      C W Kung, Y H Cheng, C M Tseng et al. J. Mater. Chem. A, 2015, 3:4042~4048. 

    43. [43]

      Z Gao, L Zhang, C Ma et al. Biosens. Bioelectron., 2016, 80:511~518. 

    44. [44]

      Y Shao, J Sun, L Gao. J. Phys. Chem. C, 2009, 113:6566~6572. 

    45. [45]

      C Coudun, J F Hochepied. J. Phys. Chem. B, 2005, 109:6069~6074. 

    46. [46]

      B Wang, X Y Lu, Y Tang. J. Mater. Chem. A, 2015, 3:9689~9699. 

    47. [47]

      D U Lee, J Scott, H W Park et al. Electrochem. Commun., 2014, 43:109~112. 

    48. [48]

      X Wang, S Yao, X Wu et al. RSC Adv., 2015, 5:17938~17944. 

    49. [49]

      B Yan, L Chen, Y Liu et al. CrystEngComm, 2014, 16:10227~10234. 

    50. [50]

      C Feng, J Zhang, Y He et al. ACS Nano, 2015, 9:1730~1739. 

    51. [51]

      P Liu, Q Hao, X Xia et al. J. Phys. Chem. C, 2015, 119:8537~8546.

    52. [52]

      W Wang, J Xu. ACS Appl. Mater. Interf., 2014, 7:415~421.

    53. [53]

      T Yang, Y Liu, Z Huang et al. RSC Adv., 2015, 5:24486~24493. 

    54. [54]

      S Kong, F Yang, K Cheng et al. J. Electroanal. Chem., 2017, 785:103~108. 

    55. [55]

      Y Cao, F Yuan, M Yao et al. CrystEngComm, 2014, 16:826~833. 

  • 加载中
    1. [1]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    2. [2]

      Tian TIANMeng ZHOUJiale WEIYize LIUYifan MOYuhan YEWenzhi JIABin HE . Ru-doped Co3O4/reduced graphene oxide: Preparation and electrocatalytic oxygen evolution property. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 385-394. doi: 10.11862/CJIC.20240298

    3. [3]

      Linping Li Junhui Su Yanping Qiu Yangqin Gao Ning Li Lei Ge . Design and fabrication of ternary Au/Co3O4/ZnCdS spherical composite photocatalyst for facilitating efficient photocatalytic hydrogen production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100472-100472. doi: 10.1016/j.cjsc.2024.100472

    4. [4]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    7. [7]

      Nengmin ZHUWenhao ZHUXiaoyao YINSongzhi ZHENGHao LIZeyuan WANGWenhao WEIXuanheng CHENWeihai SUN . Preparation of high-performance CsPbBr3 perovskite solar cells by the aqueous solution solvent method. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1131-1140. doi: 10.11862/CJIC.20240419

    8. [8]

      Shuang Meng Haixin Long Zhou Zhou Meizhu Rong . Inorganic Chemistry Curriculum Design and Implementation of Based on “Stepped-Task Driven + Multi-Dimensional Output” Model: A Case Study on Intermolecular Forces. University Chemistry, 2024, 39(3): 122-131. doi: 10.3866/PKU.DXHX202309008

    9. [9]

      Jinping Qiao Yunchao Li Caiyun Nan Yuan Zhang Shuo Wei Yunling Zhao Juan Han Yufeng Li Yanping Quan Genban Sun Huifeng Li Shaoshi Guo Yong He Xuebin Deng Jiaxin Zhang Shufeng Si Jin Ouyang . Utilizing the “Second Classroom” for Multidimensional Laboratory Access to Expand the Depth and Breadth of Experimental Teaching. University Chemistry, 2024, 39(7): 99-105. doi: 10.12461/PKU.DXHX202405016

    10. [10]

      Zhuoming Liang Ming Chen Zhiwen Zheng Kai Chen . Multidimensional Studies on Ketone-Enol Tautomerism of 1,3-Diketones By 1H NMR. University Chemistry, 2024, 39(7): 361-367. doi: 10.3866/PKU.DXHX202311029

    11. [11]

      Yanglin JiangMingqing ChenMin LiangYige YaoYan ZhangPeng WangJianping Zhang . Experimental and Theoretical Investigations of Solvent Polarity Effect on ESIPT Mechanism in 4′-N,N-diethylamino-3-hydroxybenzoflavone. Acta Physico-Chimica Sinica, 2025, 41(2): 2309027-0. doi: 10.3866/PKU.WHXB202309027

    12. [12]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    13. [13]

      Qin ZHUJiao MAZhihui QIANYuxu LUOYujiao GUOMingwu XIANGXiaofang LIUPing NINGJunming GUO . Morphological evolution and electrochemical properties of cathode material LiAl0.08Mn1.92O4 single crystal particles. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1549-1562. doi: 10.11862/CJIC.20240022

    14. [14]

      Xiuzheng DengChanghai LiuXiaotong YanJingshan FanQian LiangZhongyu Li . Carbon dots anchored NiAl-LDH@In2O3 hierarchical nanotubes for promoting selective CO2 photoreduction into CH4. Chinese Chemical Letters, 2024, 35(6): 108942-. doi: 10.1016/j.cclet.2023.108942

    15. [15]

      Ruiying Liu Li Zhao Baishan Liu Jiayuan Yu Yujie Wang Wanqiang Yu Di Xin Chaoqiong Fang Xuchuan Jiang Riming Hu Hong Liu Weijia Zhou . Modulating pollutant adsorption and peroxymonosulfate activation sites on Co3O4@N,O doped-carbon shell for boosting catalytic degradation activity. Chinese Journal of Structural Chemistry, 2024, 43(8): 100332-100332. doi: 10.1016/j.cjsc.2024.100332

    16. [16]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

    17. [17]

      Xiuzheng DengYi KeJiawen DingYingtang ZhouHui HuangQian LiangZhenhui Kang . Construction of ZnO@CDs@Co3O4 sandwich heterostructure with multi-interfacial electron-transfer toward enhanced photocatalytic CO2 reduction. Chinese Chemical Letters, 2024, 35(4): 109064-. doi: 10.1016/j.cclet.2023.109064

    18. [18]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    19. [19]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    20. [20]

      Kexin YanZhaoqi YeLingtao KongHe LiXue YangYahong ZhangHongbin ZhangYi Tang . Seed-Induced Synthesis of Disc-Cluster Zeolite L Mesocrystals with Ultrashort c-Axis: Morphology Control, Decoupled Mechanism, and Enhanced Adsorption. Acta Physico-Chimica Sinica, 2024, 40(9): 2308019-0. doi: 10.3866/PKU.WHXB202308019

Metrics
  • PDF Downloads(128)
  • Abstract views(6197)
  • HTML views(1691)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return