Citation: Dong Xue, Xu Chao, Chen Jing. Progress in the Oxidation Separation of Americium in Nuclear Fuel Cycles[J]. Chemistry, ;2020, 83(4): 289-295. shu

Progress in the Oxidation Separation of Americium in Nuclear Fuel Cycles

  • Received Date: 9 December 2019
    Accepted Date: 8 January 2020

Figures(4)

  • Americium mainly exists as trivalent Am(Ⅲ) in aqueous solutions. Due to the similarity in ionic radius and chemical properties of Am(Ⅲ) and trivalent lanthanides (Ln(Ⅲ)), the separation of Am(Ⅲ) from Ln(Ⅲ) is regarded as one of the most challenging tasks in nuclear fuel cycles. Am(Ⅲ) can be oxidized to higher oxidation states such as AmO2+ and AmO22+ through different oxidation methods and then it could be separated from Ln(Ⅲ) by using well-developed solvent extraction or precipitation methods, providing a new route for the separation of Am from Ln. In this paper, the progress on the oxidation separation of Am(Ⅲ) in nuclear fuel cycles have been reviewed, the oxidation principles and relevant mechanisms were described, the advantages and disadvantages of various methods were compared, and the future trends for the oxidation separation of Am(Ⅲ) were also discussed. It hopes to provide a guidance for developing novel techniques for the separation of actinides and lanthanides.
  • 加载中
    1. [1]

    2. [2]

      Zhu Y J, Song C L. Recovery of neptunium, plutonium, and americium from highly active waste. Proceedings of Transuranium Elements, 1992.

    3. [3]

      Cuillerdier C, Musikas C, Hoel C, et al. Sep. Sci. Technol., 1991, 26(9):1229~1244. 

    4. [4]

      Potential Benefits and Impacts of Advanced Nuclear Fuel Cycles with Actinide Partitioning and Transmutation. NEA No. 6894; OECD, Nuclear Energy Agency (NEA): Paris, 2011

    5. [5]

      Ekberg C, Fermvik A, Retegan T, et al. Radiochim. Acta., 2008, (96):225~233.

    6. [6]

      Dares C J, Lapides A M, Mincher B J, et al. Science, 2015, 350(6261):652~655. 

    7. [7]

      Runde W H, Mincher B J. Chem. Rev., 2011, 111(9):5723~5741. 

    8. [8]

      Mincher B J, Schmitt N C, Tillotson R D, et al. Solvent. Extr. Ion. Exc., 2014, 32(2):153~166. 

    9. [9]

      Baybarz R D. J. Inorg. Nucl. Chem., 1973, 35(2):483~487. 

    10. [10]

      Baybarz R D, Aspery L B, Strouse C E, et al. J. Inorg. Nucl. Chem., 1972, 34(11):3427~3431. 

    11. [11]

      Krot N N, Shilov V P, Nikolaevskii V B, et al. Preparation of americium in heptavalent state (No. ORNL-tr-2828). AN SSSR, Moscow (USSR). Inst. Fizicheskoj Khimii., 1974.

    12. [12]

      Morss L R. The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer, 2006.

    13. [13]

      Hara M, Suzuki S. Bull. Chem. Soc. Jpn, 1979, 52(4):1041~1045. 

    14. [14]

      Hara M, Suzuki S. J. Radioanal. Nucl. Chem., 1977, 36(1):95~104.

    15. [15]

      Mincher B J, Martin L R, Schmitt N C. Inorg. Chem., 2008, 47(15):6984~6989. 

    16. [16]

      Richards J M, Sudowe R. Anal. Chem., 2016, 88(9):4605~4608. 

    17. [17]

      Reed W A, Garnov A Y, Rao L et al. Sep. Sci. Technol., 2005, 40(5):1029~1046. 

    18. [18]

      Asprey L B, Stephanou S E, Penneman R A. J. Am. Chem. Soc., 1950, 72(3):1425~1426. 

    19. [19]

      Newton T W. Kinetics of the Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium in Aqueous Solutions. No. TID-26506. Los Alamos Scientific Lab., N. Mex.(USA), 1975.

    20. [20]

      Elbs K, Schönherr O. Zeitschrift für Elektrochemie, 1895, 2(12):245~252. 

    21. [21]

      Kolthoff I M, Miller I K. J. Am. Chem. Soc., 1951, 73(7):1~30.

    22. [22]

      Moore F L. Anal. Chem., 1963, 35(6):715~719. 

    23. [23]

      Mincher B J, Law J D, Goff G S et al. Higher Americium Oxidation State Research Roadmap. No. INL/EXT-15-37534. Idaho National Lab.(INL), Idaho Falls, ID (United States), 2015.

    24. [24]

      Thompson R C, Appelman E H. Inorg. Chem., 1981, 7(20):2114~2115.

    25. [25]

      Yanir E, Givon M, Marcus Y. Inorg. Nucl. Chem. Lett., 1969, 5(5):369~372. 

    26. [26]

      Kazi Z, Nicolas G, Christl M et al. J. Radioanal. Nucl. Chem., 2019, 321(5):227~233.

    27. [27]

      Shultz W W. The Chemistry of Americium, ERDA Critical Review Series, TID-26971, 1976.

    28. [28]

      Tsushima S, Nagasaki S, Suzuki A. Sep. Sci. Technol., 1996, 31(17):2443~2453. 

    29. [29]

      Coleman J S, Armstrong D E, Asprey L B, et al. Purification of gram amounts of americium. No. LA-1975. Los Alamos Scientific Lab., N. Mex., 1955.

    30. [30]

      Stephanou S E, Nigon J P, Penneman R A. J. Chem. Phys., 1953, 21(1):42~45.

    31. [31]

      Gogolev A V, Tananaev I G, Myasoedov B F. Radiochemistry, 2004, 46(3):246~248. 

    32. [32]

      Asprey L B, Stephanou S E, Penneman R A. J. Am. Chem. Soc., 1951, 73(12):5715~5717. 

    33. [33]

      Myasoedov B F, Lebedev I A, Khizhnyak P L, et al. J. Less Common Metals, 1986, 122(86):189~193.

    34. [34]

      Hobart D E, Samhoun K, Peterson J R. Radiochim. Acta., 1982, 31(3/4):139~146.

    35. [35]

      Lopez M J, Sheridan M V, Mclachlan J R, et al. Chem. Commun., 2019, 55(28):4035~4038. 

    36. [36]

      Wada Y, Morimoto K, Goibuchi T, et al. J. Nucl. Sci. Technol., 1995, 32(10):1018~1026. 

    37. [37]

      Fukasawa T, Kawamura F. J. Nucl. Sci. Technol., 1991, 28(1):27~32. 

    38. [38]

      Tsushima S, Nagasaki S, Suzuki A. J. Nucl. Sci. Technol., 1995, 32(2):154~156. 

    39. [39]

      Sasaki S, Wada Y, Tomiyasu H. Prog. Nucl. Energ., 1998, 32(3/4):403~410.

    40. [40]

      Wada Y, Wada K, Goibuchi T, et al. J. Nucl. Sci. Technol., 1994, 31.(7):700~710. 

    41. [41]

      Tsushima S, Nagasaki S, Suzuki A. J. Nucl. Sci. Technol., 1995, 32(2):154~156. 

    42. [42]

      Shilov V P, Gogolev A V, Fedosseev A M. Russ. Chem. Bull., 2019, 68(7):1458~1459. 

    43. [43]

      Enokida Y, Suzuki A. J. Nucl. Sci. Technol., 1989, 26(8):770~776. 

    44. [44]

       

    45. [45]

      Nikonov M V, Shilov V P, Krot N N. Radiokhimiya, 1989, 31(5):23~26.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Peiyu Zhang Aixin Song Jingcheng Hao Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081

    3. [3]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    4. [4]

      Zhaoyang WANGChun YANGYaoyao SongNa HANXiaomeng LIUQinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114

    5. [5]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    6. [6]

      Ye WangRuixiang GeXiang LiuJing LiHaohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019

    7. [7]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    8. [8]

      Zilin HuYaoshen NiuXiaohui RongYongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005

    9. [9]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    10. [10]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    11. [11]

      Xiaotian ZHUFangding HUANGWenchang ZHUJianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260

    12. [12]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    13. [13]

      Wenjuan TanYong YeXiujuan SunBei LiuJiajia ZhouHailong LiaoXiulin WuRui DingEnhui LiuPing Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054

    14. [14]

      Wendian XIEYuehua LONGJianyang XIELiqun XINGShixiong SHEYan YANGZhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050

    15. [15]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    16. [16]

      Minna Ma Yujin Ouyang Yuan Wu Mingwei Yuan Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093

    17. [17]

      Yunting Shang Yue Dai Jianxin Zhang Nan Zhu Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050

    18. [18]

      Linbao Zhang Weisi Guo Shuwen Wang Ran Song Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009

    19. [19]

      Chuanming GUOKaiyang ZHANGYun WURui YAOQiang ZHAOJinping LIGuang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459

    20. [20]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

Metrics
  • PDF Downloads(11)
  • Abstract views(986)
  • HTML views(336)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return