Citation:
Dong Xue, Xu Chao, Chen Jing. Progress in the Oxidation Separation of Americium in Nuclear Fuel Cycles[J]. Chemistry,
;2020, 83(4): 289-295.
-
Americium mainly exists as trivalent Am(Ⅲ) in aqueous solutions. Due to the similarity in ionic radius and chemical properties of Am(Ⅲ) and trivalent lanthanides (Ln(Ⅲ)), the separation of Am(Ⅲ) from Ln(Ⅲ) is regarded as one of the most challenging tasks in nuclear fuel cycles. Am(Ⅲ) can be oxidized to higher oxidation states such as AmO2+ and AmO22+ through different oxidation methods and then it could be separated from Ln(Ⅲ) by using well-developed solvent extraction or precipitation methods, providing a new route for the separation of Am from Ln. In this paper, the progress on the oxidation separation of Am(Ⅲ) in nuclear fuel cycles have been reviewed, the oxidation principles and relevant mechanisms were described, the advantages and disadvantages of various methods were compared, and the future trends for the oxidation separation of Am(Ⅲ) were also discussed. It hopes to provide a guidance for developing novel techniques for the separation of actinides and lanthanides.
-
Keywords:
- Actinides/lanthanides separation,
- Americium,
- Lanthanides,
- Oxidation
-
-
-
[1]
-
[2]
Zhu Y J, Song C L. Recovery of neptunium, plutonium, and americium from highly active waste. Proceedings of Transuranium Elements, 1992.
-
[3]
Cuillerdier C, Musikas C, Hoel C, et al. Sep. Sci. Technol., 1991, 26(9):1229~1244.
-
[4]
Potential Benefits and Impacts of Advanced Nuclear Fuel Cycles with Actinide Partitioning and Transmutation. NEA No. 6894; OECD, Nuclear Energy Agency (NEA): Paris, 2011
-
[5]
Ekberg C, Fermvik A, Retegan T, et al. Radiochim. Acta., 2008, (96):225~233.
-
[6]
Dares C J, Lapides A M, Mincher B J, et al. Science, 2015, 350(6261):652~655.
- [7]
-
[8]
Mincher B J, Schmitt N C, Tillotson R D, et al. Solvent. Extr. Ion. Exc., 2014, 32(2):153~166.
- [9]
-
[10]
Baybarz R D, Aspery L B, Strouse C E, et al. J. Inorg. Nucl. Chem., 1972, 34(11):3427~3431.
-
[11]
Krot N N, Shilov V P, Nikolaevskii V B, et al. Preparation of americium in heptavalent state (No. ORNL-tr-2828). AN SSSR, Moscow (USSR). Inst. Fizicheskoj Khimii., 1974.
-
[12]
Morss L R. The Chemistry of the Actinide and Transactinide Elements. Dordrecht: Springer, 2006.
-
[13]
Hara M, Suzuki S. Bull. Chem. Soc. Jpn, 1979, 52(4):1041~1045.
-
[14]
Hara M, Suzuki S. J. Radioanal. Nucl. Chem., 1977, 36(1):95~104.
-
[15]
Mincher B J, Martin L R, Schmitt N C. Inorg. Chem., 2008, 47(15):6984~6989.
- [16]
-
[17]
Reed W A, Garnov A Y, Rao L et al. Sep. Sci. Technol., 2005, 40(5):1029~1046.
-
[18]
Asprey L B, Stephanou S E, Penneman R A. J. Am. Chem. Soc., 1950, 72(3):1425~1426.
-
[19]
Newton T W. Kinetics of the Oxidation-Reduction Reactions of Uranium, Neptunium, Plutonium, and Americium in Aqueous Solutions. No. TID-26506. Los Alamos Scientific Lab., N. Mex.(USA), 1975.
-
[20]
Elbs K, Schönherr O. Zeitschrift für Elektrochemie, 1895, 2(12):245~252.
-
[21]
Kolthoff I M, Miller I K. J. Am. Chem. Soc., 1951, 73(7):1~30.
- [22]
-
[23]
Mincher B J, Law J D, Goff G S et al. Higher Americium Oxidation State Research Roadmap. No. INL/EXT-15-37534. Idaho National Lab.(INL), Idaho Falls, ID (United States), 2015.
-
[24]
Thompson R C, Appelman E H. Inorg. Chem., 1981, 7(20):2114~2115.
-
[25]
Yanir E, Givon M, Marcus Y. Inorg. Nucl. Chem. Lett., 1969, 5(5):369~372.
-
[26]
Kazi Z, Nicolas G, Christl M et al. J. Radioanal. Nucl. Chem., 2019, 321(5):227~233.
-
[27]
Shultz W W. The Chemistry of Americium, ERDA Critical Review Series, TID-26971, 1976.
-
[28]
Tsushima S, Nagasaki S, Suzuki A. Sep. Sci. Technol., 1996, 31(17):2443~2453.
-
[29]
Coleman J S, Armstrong D E, Asprey L B, et al. Purification of gram amounts of americium. No. LA-1975. Los Alamos Scientific Lab., N. Mex., 1955.
-
[30]
Stephanou S E, Nigon J P, Penneman R A. J. Chem. Phys., 1953, 21(1):42~45.
-
[31]
Gogolev A V, Tananaev I G, Myasoedov B F. Radiochemistry, 2004, 46(3):246~248.
-
[32]
Asprey L B, Stephanou S E, Penneman R A. J. Am. Chem. Soc., 1951, 73(12):5715~5717.
-
[33]
Myasoedov B F, Lebedev I A, Khizhnyak P L, et al. J. Less Common Metals, 1986, 122(86):189~193.
-
[34]
Hobart D E, Samhoun K, Peterson J R. Radiochim. Acta., 1982, 31(3/4):139~146.
-
[35]
Lopez M J, Sheridan M V, Mclachlan J R, et al. Chem. Commun., 2019, 55(28):4035~4038.
-
[36]
Wada Y, Morimoto K, Goibuchi T, et al. J. Nucl. Sci. Technol., 1995, 32(10):1018~1026.
-
[37]
Fukasawa T, Kawamura F. J. Nucl. Sci. Technol., 1991, 28(1):27~32.
-
[38]
Tsushima S, Nagasaki S, Suzuki A. J. Nucl. Sci. Technol., 1995, 32(2):154~156.
-
[39]
Sasaki S, Wada Y, Tomiyasu H. Prog. Nucl. Energ., 1998, 32(3/4):403~410.
-
[40]
Wada Y, Wada K, Goibuchi T, et al. J. Nucl. Sci. Technol., 1994, 31.(7):700~710.
-
[41]
Tsushima S, Nagasaki S, Suzuki A. J. Nucl. Sci. Technol., 1995, 32(2):154~156.
-
[42]
Shilov V P, Gogolev A V, Fedosseev A M. Russ. Chem. Bull., 2019, 68(7):1458~1459.
-
[43]
Enokida Y, Suzuki A. J. Nucl. Sci. Technol., 1989, 26(8):770~776.
- [44]
-
[45]
Nikonov M V, Shilov V P, Krot N N. Radiokhimiya, 1989, 31(5):23~26.
-
[1]
-
-
-
[1]
Peng YUE , Liyao SHI , Jinglei CUI , Huirong ZHANG , Yanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210
-
[2]
Peiyu Zhang , Aixin Song , Jingcheng Hao , Jiwei Cui . 高频超声法制备聚多巴胺薄膜综合实验. University Chemistry, 2025, 40(6): 210-214. doi: 10.12461/PKU.DXHX202407081
-
[3]
Xiaoling LUO , Pintian ZOU , Xiaoyan WANG , Zheng LIU , Xiangfei KONG , Qun TANG , Sheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271
-
[4]
Zhaoyang WANG , Chun YANG , Yaoyao Song , Na HAN , Xiaomeng LIU , Qinglun WANG . Lanthanide(Ⅲ) complexes derived from 4′-(2-pyridyl)-2, 2′∶6′, 2″-terpyridine: Crystal structures, fluorescent and magnetic properties. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1442-1451. doi: 10.11862/CJIC.20240114
-
[5]
Yahui HAN , Jinjin ZHAO , Ning REN , Jianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395
-
[6]
Ye Wang , Ruixiang Ge , Xiang Liu , Jing Li , Haohong Duan . An Anion Leaching Strategy towards Metal Oxyhydroxides Synthesis for Electrocatalytic Oxidation of Glycerol. Acta Physico-Chimica Sinica, 2024, 40(7): 2307019-0. doi: 10.3866/PKU.WHXB202307019
-
[7]
Yue Zhang , Bao Li , Lixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038
-
[8]
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
-
[9]
Yan LIU , Jiaxin GUO , Song YANG , Shixian XU , Yanyan YANG , Zhongliang YU , Xiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043
-
[10]
Xiaoning TANG , Shu XIA , Jie LEI , Xingfu YANG , Qiuyang LUO , Junnan LIU , An XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149
-
[11]
Xiaotian ZHU , Fangding HUANG , Wenchang ZHU , Jianqing ZHAO . Layered oxide cathode for sodium-ion batteries: Surface and interface modification and suppressed gas generation effect. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 254-266. doi: 10.11862/CJIC.20240260
-
[12]
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
-
[13]
Wenjuan Tan , Yong Ye , Xiujuan Sun , Bei Liu , Jiajia Zhou , Hailong Liao , Xiulin Wu , Rui Ding , Enhui Liu , Ping Gao . Building P-Poor Ni2P and P-Rich CoP3 Heterojunction Structure with Cation Vacancy for Enhanced Electrocatalytic Hydrazine and Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(6): 2306054-0. doi: 10.3866/PKU.WHXB202306054
-
[14]
Wendian XIE , Yuehua LONG , Jianyang XIE , Liqun XING , Shixiong SHE , Yan YANG , Zhihao HUANG . Preparation and ion separation performance of oligoether chains enriched covalent organic framework membrane. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1528-1536. doi: 10.11862/CJIC.20240050
-
[15]
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
-
[16]
Minna Ma , Yujin Ouyang , Yuan Wu , Mingwei Yuan , Lijuan Yang . Green Synthesis of Medical Chemiluminescence Reagents by Photocatalytic Oxidation. University Chemistry, 2024, 39(5): 134-143. doi: 10.3866/PKU.DXHX202310093
-
[17]
Yunting Shang , Yue Dai , Jianxin Zhang , Nan Zhu , Yan Su . Something about RGO (Reduced Graphene Oxide). University Chemistry, 2024, 39(9): 273-278. doi: 10.3866/PKU.DXHX202306050
-
[18]
Linbao Zhang , Weisi Guo , Shuwen Wang , Ran Song , Ming Li . Electrochemical Oxidation of Sulfides to Sulfoxides. University Chemistry, 2024, 39(11): 204-209. doi: 10.3866/PKU.DXHX202401009
-
[19]
Chuanming GUO , Kaiyang ZHANG , Yun WU , Rui YAO , Qiang ZHAO , Jinping LI , Guang LIU . Performance of MnO2-0.39IrOx composite oxides for water oxidation reaction in acidic media. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1135-1142. doi: 10.11862/CJIC.20230459
-
[20]
Zhihuan XU , Qing KANG , Yuzhen LONG , Qian YUAN , Cidong LIU , Xin LI , Genghuai TANG , Yuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447
-
[1]
Metrics
- PDF Downloads(11)
- Abstract views(987)
- HTML views(336)