Citation: HU Shi-hao, ZHANG Jia-kai, CEN Ke-fa, ZHOU Hao. Ash deposition characteristics during co-combustion of coal and sawdust[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(9): 1055-1062. shu

Ash deposition characteristics during co-combustion of coal and sawdust

  • Corresponding author: ZHOU Hao, zhouhao@zju.edu.cn
  • Received Date: 21 May 2020
    Revised Date: 15 July 2020

    Fund Project: The project was supported by the National Science Fund for Distinguished Young Scholars(51825605)The project was supported by the National Science Fund for Distinguished Young Scholars 51825605

Figures(8)

  • The ash deposition characteristics during co-combustion of coal and sawdust was studied in a 50 kW furnace with an online monitoring system composed of CCD camera and ash deposition probe. The deposition process can be divided into three stages: slow growth stage, rapid and stable stage. The stable thickness of bituminous coal increases with increasing proportion of sawdust, while that of lean coal is opposite. The stable thickness of bituminous coal are 1.37, 3.85, 11.50, 20.56 mm and the stable relative heat flux are 0.44, 0.41, 0.30, 0.26 when blending ratio of sawdust are 0, 6.7%, 15%, 22% respectively. The stable slags thickness of lean coal are 18.65, 10.97, 9.78 mm and the stable relative heat flux densities are 0.29, 0.31, 0.33 when blending ratio of sawdust are 6.7%, 15% and 22%. Ca and K in the initial layer of deposition significantly increases in the co-combustion. The melting fraction calculated by FactSage software shows that at the same tem-perature, the melting fraction of ash increases as the sawdust is increased. Because the wood ash contains more alkali metal oxides such as Na2O and K2O, while the content of Al2O3 and SiO2 is less, which lowers the melting temperature of ash.
  • 加载中
    1. [1]

      ZHOU W, SWANSON L, MOYEDA D, XU G. Process evaluation of biomass cofiring and reburning in utility boilers[J]. Energy Fuels, 2010,24(8):4510-4517. doi: 10.1021/ef1005379

    2. [2]

      NING Xin-yu, LI Shi-yuan, LÜ Qing-gang. Study on co-firing and agglomeration mechanism of stalk biomass and stone coal in fluidized bed[J]. Proc CSEE, 2008,28(29):105-110.  

    3. [3]

      BARTOLOMÉ C, GIL A. Ash deposition and fouling tendency of two energy crops (cynara and poplar) and a forest residue (pine chips) co-fired with coal in a pulverized fuel pilot plant[J]. Energy Fuels, 2013,27(10):5878-5889. doi: 10.1021/ef401420j

    4. [4]

      DEMIRBAS A. Combustion characteristics of different biomass fuels[J]. Prog Energy Combust Sci, 2004,30(2):219-223. doi: 10.1016/j.pecs.2003.10.004

    5. [5]

      NAGANUMA H, IKEDA N, KAWAI T, TAKUWA T, ITO T, IGARASHI Y, YOSHIIE R, NARUSE I. Control of ash deposition in pulverized coal fired boiler[J]. Proc Combust Inst, 2009,32(2):2709-2716. doi: 10.1016/j.proci.2008.06.001

    6. [6]

      VAMVUKA D, MISTAKIDOU E, DRAKONAKI S, FOSCOLOS A, KAVOURIDIS K. Ash quality of a beneficiated lignite from ptolemais basin, northern greece[J]. Energy Fuels, 2001,15(5):1181-1185. doi: 10.1021/ef0100193

    7. [7]

      ZHIMIN Z, HUI W, YONGTIE C, XING W, SHAOHUA W. A novel method used to study growth of ash deposition and in situ measurement of effective thermal conductivity of ash deposit[J]. Heat Transf Res, 2018,47(2):271-285. doi: 10.1002/htj.21302

    8. [8]

      ABREU P, CASACA C, COSTA M. Ash deposition during the co-firing of bituminous coal with pine sawdust and olive stones in a laboratory furnace[J]. Fuel, 2010,89(12):4040-4048. doi: 10.1016/j.fuel.2010.04.012

    9. [9]

      WANG X, XU Z, WEI B, ZHANG L, TAN H, YANG T, MIKULI H, DUI N. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    10. [10]

      NORDGREN D, HEDMAN H, PADBAN N, BOSTRÖM D, ÖHMAN M. Ash transformations in pulverised fuel co-combustion of straw and woody biomass[J]. Fuel Process Technol, 2013,105:52-58. doi: 10.1016/j.fuproc.2011.05.027

    11. [11]

      WIGLEY F, WILLIAMSON J, MALMGREN A, RILEY G. Ash deposition at higher levels of coal replacement by biomass[J]. Fuel Process Technol, 2007,88(11/12):1148-1154.  

    12. [12]

      ZHOU HAO, ZHANG JIAKAI, ZHANG KUN. Investigation of the deposition characteristics of ammonium bisulfate and fly ash blend using an on-line digital image technique:Effect of deposition surface temperature[J]. Fuel Process Technol, 2018,179:359-368. doi: 10.1016/j.fuproc.2018.07.030

    13. [13]

      ZHOU H, ZHOU B, LI L, ZHANG H. Experimental measurement of the effective thermal conductivity of ash deposit for high sodium coal (Zhun Dong Coal) in a 300 KW test furnace[J]. Energy Fuels, 2013,27(11):7008-7022. doi: 10.1021/ef4012017

    14. [14]

      ZHOU H, ZHOU B, ZHANG H, LI L. Behavior of fouling deposits formed on a probe with different surface temperatures[J]. Energy Fuels, 2014,28(12):7701-7711. doi: 10.1021/ef502141x

    15. [15]

      LI G, LI S, HUANG Q, YAO Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015,143:430-437. doi: 10.1016/j.fuel.2014.11.067

    16. [16]

      PAN Pan. Research on ash deposition characteristics of coal[D]. Baoding: North China Electric Power University (Baoding), 2007.

  • 加载中
    1. [1]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    2. [2]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    3. [3]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    4. [4]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    5. [5]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    6. [6]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    7. [7]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    8. [8]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    9. [9]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    10. [10]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    11. [11]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    12. [12]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    13. [13]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    15. [15]

      Hongbo Zhang Yihong Tang Suxia Zhang Yuanting Li . Electrochemical Monitoring of Photocatalytic Degradation of Phenol Pollutants: A Recommended Comprehensive Analytical Chemistry Experiment. University Chemistry, 2024, 39(6): 326-333. doi: 10.3866/PKU.DXHX202310013

    16. [16]

      Lingbang Qiu Jiangmin Jiang Libo Wang Lang Bai Fei Zhou Gaoyu Zhou Quanchao Zhuang Yanhua Cui . 原位电化学阻抗谱监测长寿命热电池Nb12WO33正极材料的高温双放电机制. Acta Physico-Chimica Sinica, 2025, 41(5): 100040-. doi: 10.1016/j.actphy.2024.100040

    17. [17]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    18. [18]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    19. [19]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    20. [20]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

Metrics
  • PDF Downloads(1)
  • Abstract views(997)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return