Citation: Ma Zhiying, Gao Xue, Song Yu, Liu Xiuying, Li Jianrong. Determination of Free Cholesterol in Serum by Tyramine Modified Graphene Quantum Dots[J]. Chemistry, ;2020, 83(7): 659-664. shu

Determination of Free Cholesterol in Serum by Tyramine Modified Graphene Quantum Dots

Figures(10)

  • In this study, graphene quantum dots (GQDs) with catalase activity were synthesized from citric acid. GQDs modified by tyramine (TYR-GQDs) can reduce hydrogen peroxide to hydroxyl radicals. GQDs aggregates through the cross-linking between phenolic hydroxyls, which leads to fluorescence quenching. Since cholesterol oxidase can catalyze the oxidation of cholesterol to produce H2O2, a fluorescence sensor for detecting cholesterol was established based on TYR-GQDs. The experimental results showed that under the condition of pH=7.4, the fluorescence quenching rate of TYR-GQDs exlibits a good linear relationship with the logarithm of cholesterol concentration (2.67×10-8~2.67×10-3 mol/L), and the detection limit is 9.32×10-9 mol/L. The interference experiment showed that the fluorescent sensor has high selectivity for cholesterol and can be used for the detection of free cholesterol in human serum. The recovery of standard addition is 96.55%~100.14%.
  • 加载中
    1. [1]

      Baby M, Kumar K R. Mater. Sci. Technol., 2019, 35(11182):1~12.

    2. [2]

      Drozd D, Zhang H, Goryacheva I, et al. Talanta, 2019, 205:120164.

    3. [3]

      De C K, Roy D, Mandal S, et al. J. Phys. Chem. Lett., 2019, 10(15):4330~4338.

    4. [4]

      Lin Y J, Huang K B, Wu Y C, et al. Int. J. Polym. Mater. Polym. Biomater., 2019, 68(16):993~1004.

    5. [5]

      Chen L, Lin J, Yi J, et al. Anal. Bioanal. Chem., 2019, 411(20):5277~5285.

    6. [6]

      Castro R C, Soares J X, Ribeiro D S M, et al. Sens. Actuat. B, 2019, 296:126665.

    7. [7]

      Nurunnabi M, Khatun Z, Huh K M, et al ACS Nano, 2013, 7(8):6858~6867.

    8. [8]

      Jin S H, Kim D H, Jun G H, et al. ACS Nano, 2013, 7(2):1239~1245.

    9. [9]

      Wang Y, Wang H, Xu A, et al. J. Mater. Sci. Mater. El., 2018, 29(19):16691~16701.

    10. [10]

      Pang X, Bian H, Wang W, et al. Biosens. Bioelectron., 2016, 91:456~464. 

    11. [11]

      Chen W, Li F, Wu C, et al. Appl. Phys. Lett., 2014, 104(6):063109.

    12. [12]

      Sun H, Wu L, Wei W, et al. Mater. Today, 2013, 16(11):433~442.

    13. [13]

      Zhao Y, Tong R J, Chen M Q, et al. IEEE Photon. Technol. Lett., 2017, 29(18):1544~1547.

    14. [14]

      Suryawanshi A, Biswal M, Mhamane D, et al. Nanoscale, 2014, 6(20):11664~11670.

    15. [15]

      S K Tuteja, R Chen, M Kukkar, et al. Biosens. Bioelectron., 2016, 86(15):548~56.

    16. [16]

       

    17. [17]

       

    18. [18]

       

    19. [19]

      Arai Y, Choi B, Kim B J, et al. Biomater. Sci., 2019, 7(8):3178~3189.

    20. [20]

       

    21. [21]

      Wilhelm L P, Voilquin L, Kobayashi T, et al. Intracellular and Plasma Membrane Cholesterol Labeling and Quantification Using Filipin and GFP-D4//Intracellular Lipid Transport. Humana Press, New York, NY, 2019:137~152.

    22. [22]

      Martin S P, Lamb D J, Lynch J M, et al. Anal. Chim. Acta, 2003, 487(1):91~100.

    23. [23]

      Kever L, Cherezova A, Zenin V, et al. Cell Biol. Int., 2019, 43(8):965~975.

    24. [24]

      Karimi S, Ghourchian H, Rahimi P, et al. Anal. Methods, 2012, 4(10):3225~3231.

    25. [25]

      Torres-Gamez J, Rodriguez A J, Paez-Hernandez M E, et al. Int. J. Anal. Chem., 2019, 7532687.

    26. [26]

      Okazaki M, Shiraishi K, Ohno Y, et al. J. Chromatogr., 1981, 223(2):285~293.

    27. [27]

      Roy S, Vedala H, Choi W B. MRS Proceed., 2005, 900:126842.

    28. [28]

      Nirala N R, Abraham S, Kumar V, et al. Sens. Actuat. B, 2015, 218:42~50.

    29. [29]

       

    30. [30]

    31. [31]

       

    32. [32]

       

    33. [33]

    34. [34]

    35. [35]

       

    36. [36]

      Han Z, Nan D, Yang H, et al. Sens. Actuat. B, 2019, 298:126842.

    37. [37]

      Li N, Than A, Wang X, et al. ACS Nano, 2016, 10(3):3622~3629. 

    38. [38]

       

    39. [39]

       

    40. [40]

      Sadhukhan M, Bhowmik T, Kundu M K, et al. RSC Adv., 2014, 4(10):4998~5005. 

    41. [41]

      Zhang L, Peng D, Liang R P, et al. Chem. Eur. J., 2015, 21(26):9343~9348. 

    42. [42]

      Zeng Y L, Wang Y J, Su Z H, et al. Determination of hydrogen peroxide residue in food using CdS quantum dots as fluorescence probes//Advanced Materials Research. Trans Tech Publications Ltd, 2012, 455:1189~1194.

  • 加载中
    1. [1]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    2. [2]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    3. [3]

      Yunkang TongHaiqiao HuangHaolan LiMingle LiWen SunJianjun DuJiangli FanLei WangBin LiuXiaoqiang ChenXiaojun Peng . Cooperative bond scission by HRP/H2O2 for targeted prodrug activation. Chinese Chemical Letters, 2024, 35(12): 109663-. doi: 10.1016/j.cclet.2024.109663

    4. [4]

      Mahmoud SayedHan LiChuanbiao Bie . Challenges and prospects of photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(9): 100117-0. doi: 10.1016/j.actphy.2025.100117

    5. [5]

      Xibao LiYiyang WanFang DengYingtang ZhouPinghua ChenFan DongJizhou Jiang . Advances in Z-scheme and S-scheme heterojunctions for photocatalytic and photoelectrocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(10): 111418-. doi: 10.1016/j.cclet.2025.111418

    6. [6]

      Jiaming LiNa XuYafei ZhangHongjun DongChunmei Li . Research progress of heterogeneous photocatalyst for H2O2 production: A mini review. Chinese Chemical Letters, 2025, 36(11): 110470-. doi: 10.1016/j.cclet.2024.110470

    7. [7]

      Cailiang YueNan SunYixing QiuLinlin ZhuZhiling DuFuqiang Liu . A direct Z-scheme 0D α-Fe2O3/TiO2 heterojunction for enhanced photo-Fenton activity with low H2O2 consumption. Chinese Chemical Letters, 2024, 35(12): 109698-. doi: 10.1016/j.cclet.2024.109698

    8. [8]

      Jing Wang Zhongliao Wang Jinfeng Zhang Kai Dai . Single-layer crystalline triazine-based organic framework photocatalysts with different linking groups for H2O2 production. Chinese Journal of Structural Chemistry, 2023, 42(12): 100202-100202. doi: 10.1016/j.cjsc.2023.100202

    9. [9]

      Zhenyu HuZhenchun YangShiqi ZengKun WangLina LiChun HuYubao Zhao . Cationic surface polarization centers on ionic carbon nitride for efficient solar-driven H2O2 production and pollutant abatement. Chinese Chemical Letters, 2024, 35(10): 109526-. doi: 10.1016/j.cclet.2024.109526

    10. [10]

      Hao LvZhi LiPeng YinPing WanMingshan Zhu . Recent progress on non-metallic carbon nitride for the photosynthesis of H2O2: Mechanism, modification and in-situ applications. Chinese Chemical Letters, 2025, 36(1): 110457-. doi: 10.1016/j.cclet.2024.110457

    11. [11]

      Sikai Wu Xuefei Wang Huogen Yu . Hydroxyl-enriched hydrous tin dioxide-coated BiVO4 with boosted photocatalytic H2O2 production. Chinese Journal of Structural Chemistry, 2024, 43(12): 100457-100457. doi: 10.1016/j.cjsc.2024.100457

    12. [12]

      Xiaofang LiZhigang Wang . 调节金助催化剂的dz2占据轨道增强光催化合成H2O2. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-0. doi: 10.1016/j.actphy.2025.100080

    13. [13]

      Tong ZhouXue LiuLiang ZhaoMingtao QiaoWanying Lei . Efficient Photocatalytic H2O2 Production and Cr(Ⅵ) Reduction over a Hierarchical Ti3C2/In4SnS8 Schottky Junction. Acta Physico-Chimica Sinica, 2024, 40(10): 2309020-0. doi: 10.3866/PKU.WHXB202309020

    14. [14]

      Xinyu YinHaiyang ShiYu WangXuefei WangPing WangHuogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-0. doi: 10.3866/PKU.WHXB202312007

    15. [15]

      Zhenchun YangBixiao GuoZhenyu HuKun WangJiahao CuiLina LiChun HuYubao Zhao . Molecular engineering towards dual surface local polarization sites on poly(heptazine imide) framework for boosting H2O2 photo-production. Chinese Chemical Letters, 2024, 35(8): 109251-. doi: 10.1016/j.cclet.2023.109251

    16. [16]

      Xiaodan WangYingnan LiuZhibin LiuZhongjian LiTao ZhangYi ChengLecheng LeiBin YangYang Hou . Highly efficient electrosynthesis of H2O2 in acidic electrolyte on metal-free heteroatoms co-doped carbon nanosheets and simultaneously promoting Fenton process. Chinese Chemical Letters, 2024, 35(7): 108926-. doi: 10.1016/j.cclet.2023.108926

    17. [17]

      Guoqiang ChenZixuan ZhengWei ZhongGuohong WangXinhe Wu . Molten Intermediate Transportation-Oriented Synthesis of Amino-Rich g-C3N4 Nanosheets for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(11): 2406021-0. doi: 10.3866/PKU.WHXB202406021

    18. [18]

      Wei ZhongDan ZhengYuanxin OuAiyun MengYaorong Su . Simultaneously Improving Inter-Plane Crystallization and Incorporating K Atoms in g-C3N4 Photocatalyst for Highly-Efficient H2O2 Photosynthesis. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-0. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Zheng LiuYuqing BianGraham DawsonJiawei ZhuKai Dai . Rational constructing of Zn0.5Cd0.5S-diethylenetriamine/g-C3N4 S-scheme heterojunction with enhanced photocatalytic H2O2 production. Chinese Chemical Letters, 2025, 36(9): 111272-. doi: 10.1016/j.cclet.2025.111272

    20. [20]

      Bowen LiuJianjun ZhangHan LiBei ChengChuanbiao Bie . MOF-derived ZnO/PANI S-scheme heterojunction for efficient photocatalytic phenol mineralization coupled with H2O2 generation. Acta Physico-Chimica Sinica, 2025, 41(10): 100121-0. doi: 10.1016/j.actphy.2025.100121

Metrics
  • PDF Downloads(5)
  • Abstract views(781)
  • HTML views(132)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return