Citation: Kun Liu, Yang Bai, Jing Yang, Huaitian Bu. Hyaluronic Acid-Based Drug Delivery Carriers and Their Applications[J]. Chemistry, ;2021, 84(3): 225-231. shu

Hyaluronic Acid-Based Drug Delivery Carriers and Their Applications

Figures(5)

  • Traditional nano-drug delivery carriers mainly achieve drug release through cellular endocytosis process. However, due to their passive targeting mechanism, the enrichment and therapeutic effect of nano carriers in tumor tissues will be reduced. In recent years, hyaluronic acid (HA) has been widely reported by researchers due to its excellent water-solubility, biocompatibility, biodegradability and active tumor targeting properties. Therefore, HA has been widely utilized in the construction of drug delivery carriers and has attracted much more attention in the field of targeted cancer therapy field. Based on the different therapeutic mechanism, HA-based nano carriers and their applications in chemotherapy, photothermal therapy, photodynamic therapy, and synergistic therapy fields are summarized in this paper. On this basis, the research trends are also expected based on the progress of HA-based nano-carriers.
  • 加载中
    1. [1]

      Baumert B G, Hegi M E, Bent M J, et al. Lancet Oncol., 2016, 17(11): 1521~1532. 

    2. [2]

      Zhang F, Zhu G, Jacobson O, et al. ACS Nano, 2017, 11(9): 8838~8848. 

    3. [3]

      Chen M, He X, Wang K, et al. J. Mater. Chem. B, 2014, 2(4): 428~436. 

    4. [4]

      Xu H, He J, Zhang Y, et al. Carbohydr. Polym., 2015, 121(121): 132~139.

    5. [5]

      Park K, Lee M Y, Kimks, et al. Biomaterials, 2010, 31(19): 5258~5265. 

    6. [6]

      N V Rao, H Y Yoon, H S Han, et al. Expert Opin. Drug Deliv., 2016, 13(2): 239~252. 

    7. [7]

      C E Schante, Zuber, Herlin, et al. Carbohyd. Polym., 2011, 85(3): 469~489. 

    8. [8]

      Kohay H, Sarisozen C, Sawant R, et al. Acta Biomater., 2017, 55: 443~454. 

    9. [9]

       

    10. [10]

      Sun B. Luo C. Cui W, et al. J. Control. Release, 2017, 264: 145~159. 

    11. [11]

      Rao N V, Yoon H Y, Hab H S, et al. Expert Opin. Drug Deliv., 2016, 13, 239. 

    12. [12]

      Qiu L, Li Z, Qiao M, et al. Acta Biomater., 2014, 10(5): 2024~2035 

    13. [13]

      Cho H J, Yoon H Y, Koo H, et al. ACS Biomater. Sci. Eng., 2011, 32(29): 7181~7190.

    14. [14]

      Fang H, Zhao X, Gu X, et al. Biomacromolecules, 2020, 21(1): 104~113. 

    15. [15]

      Tian C, Asghar S, Xu Y, et al. Int. J. Biol. Macromol., 2018, 120: 2579~2588. 

    16. [16]

      Liu Y, Hui Y, Ran R, et al. Adv. Health. Mater., 2018, 7: 1800106. 

    17. [17]

      Yan Y, Dong Y, Yue S, et al. ACS Appl. Mater. Interf., 2019, 11(50): 46548~46557. 

    18. [18]

      Liu J, Liang H, Li M, et al. Biomaterials, 2018, 157: 107~124. 

    19. [19]

      Li X, Schumann C, Albarqi H A. Theranostics, 2018, 8: 767~784. 

    20. [20]

      Chen X, Lee D, Yu S, et al. Biomaterials, 2017, 122: 130~140. 

    21. [21]

      Cao X, Chen S, Bao M, et al. Prog. Chem., 2018, 30(9): 1380~1391.

    22. [22]

      Hu Y, Wang R, Wang S, et al. Sci. Rep., 2016, 6: 28325. 

    23. [23]

      Sari F, Sadkaya A M, Suren D, et al. J. Am. Chem. Soc., 2015, 19(2): 176~178.

    24. [24]

      Park J H, Von Maltzahn G, Xu M J, et al. PNAS, 2010, 107(3): 981~986. 

    25. [25]

      Gotov O, Battogtokh G, Ko Y T. Mol. Pharm., 2018, 15(10): 4668~4676. 

    26. [26]

      Liu X, Gao C, Gu J, et al. ACS Appl. Mater. Interf., 2016, 8(41): 27622~27631. 

    27. [27]

      Pan H, Zhang C, Wang T, et al. ACS Appl. Mater. Interf., 2019, 11(3): 2782~2789. 

    28. [28]

      Liang X, Fang L, Li X, et al. Biomaterials, 2017, 132: 72~84. 

    29. [29]

      Zhang M, Wang W, Cui Y, et al. Chem. Eng. J., 2018, 338: 526~538. 

    30. [30]

      Chen Y, Tan C, Zhang H, et al. Chem. Soc. Rev., 2015, 44(9): 2681~2701. 

    31. [31]

      Wang G, Zhang F, Tian R, et al. ACS Appl. Mater. Interf., 2016, 8(8): 5608~5617. 

    32. [32]

      Kim S H, Lee J E, Sharker S M, et al. Biomacromolecules, 2015, 16(11): 3519~3529. 

    33. [33]

      Xiang H, Xue F, Yi T, et al. ACS Appl. Mater. Interf., 2018, 10(19): 16344~16351. 

    34. [34]

      Curcio A, Silva A K A, Caban S, et al. Theranostics, 2019, 9(5): 1288~1302. 

    35. [35]

      Zhang L, Gao S, Zhang F, et al. ACS Nano, 2014, 8(12): 12250~12258. 

    36. [36]

      Yu G, Yu S, Saha M L, et al. Nat. Commun., 2018, 9: 4335 

    37. [37]

      Huang P, Lin J, Wang S, et al. Biomaterials, 2013, 34(19): 4643~4654. 

    38. [38]

      Li X, Lee D, Huang J D, et al. Angew. Chem. Int. Ed, 2018, 57(31): 9885~9890. 

    39. [39]

      Obald G, Boekgaarden M, Buhn A, et al. Nanoscale, 2016, 8, 12471. 

    40. [40]

      Josefsen L B, Boyle R W. Theranostics, 2012, 2(9): 916~966. 

    41. [41]

      Cai Y, Tang Q, Wu X, et al. ACS Appl. Mater. Interf., 2016, 8(17): 10737~10742. 

    42. [42]

      Gao S, Wang J, Tian R, et al. ACS Appl. Mater. Interf., 2017, 9(38): 32509~32519. 

    43. [43]

      Phua S Z F, Yang G, Lim W Q, et al. ACS Nano, 2019, 13(4): 4742~4751. 

    44. [44]

      Zhang Y, Yang D, Chen H, et al. Biomaterials, 2018, 163: 14~24. 

    45. [45]

      Li Q, Chen Y, Zhou X, et al. Mol. Pharm., 2018, 15(9): 4049~4062. 

    46. [46]

      Phua S Z F, Xue C, Lim W Q, et al. Chem. Mater., 2019, 31(9): 3349~3358. 

    47. [47]

      Huang Y Q, Sun L J, Zhang R, et al. ACS Appl. Bio Mater., 2019, 2(6): 2421~2434. 

    48. [48]

      Zhou B, Jiang B P, Sun W, et al. ACS Appl. Mater. Interf., 2018, 10(21): 18036~18049. 

    49. [49]

      Song Y, Wang J, Liu L, et al. Mol. Pharm., 2018, 15(5): 1941~1953. 

    50. [50]

      Liu G, Zou J, Tang Q, et al. ACS Appl. Mater. Interf., 2017, 9(46): 40077~40086. 

  • 加载中
    1. [1]

      Jian LiYu ZhangRongrong YanKaiyuan SunXiaoqing LiuZishang LiangYinan JiaoHui BuXin ChenJinjin ZhaoJianlin Shi . Highly Efficient, Targeted, and Traceable Perovskite Nanocrystals for Photoelectrocatalytic Oncotherapy. Acta Physico-Chimica Sinica, 2025, 41(5): 100042-0. doi: 10.1016/j.actphy.2024.100042

    2. [2]

      Jiahao Zeng Hui Chao . 诱导程序性细胞死亡的金属抗肿瘤药物研究. University Chemistry, 2025, 40(6): 145-159. doi: 10.12461/PKU.DXHX202406019

    3. [3]

      Tingting XUWenjing ZHANGYongbo SONG . Research advances of atomic precision coinage metal nanoclusters in tumor therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2275-2285. doi: 10.11862/CJIC.20240229

    4. [4]

      Fa Wang Yu Chen Hui Chao . Ruthenium(II) Complexes as Photoactivated Chemo-Prodrugs for Hypoxic Tumor Therapy. University Chemistry, 2025, 40(7): 200-212. doi: 10.12461/PKU.DXHX202410024

    5. [5]

      Xue WuYupeng LiuBingzhe WangLingyun LiZhenjian LiQingcheng WangQuansheng ChengGuichuan XingSongnan Qu . Rationally assembling different surface functionalized carbon dots for enhanced near-infrared tumor photothermal therapy. Acta Physico-Chimica Sinica, 2025, 41(9): 100109-0. doi: 10.1016/j.actphy.2025.100109

    6. [6]

      Jiahui CHENTingting ZHENGXiuyun ZHANGWei LÜ . Research progress of near-infrared absorption inorganic nanomaterials in photothermal and photodynamic therapy of tumors. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2396-2414. doi: 10.11862/CJIC.20240106

    7. [7]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    8. [8]

      Hanxue LIUShijie LIMeng RENXuling XUEHongke LIU . Design and antitumor properties of dehydroabietic acid functionalized cyclometalated iridium(Ⅲ) complex. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1483-1494. doi: 10.11862/CJIC.20250031

    9. [9]

      Xiuya Ma Yu Chen Yan Zhang . Stories about Pharmaceuticals. University Chemistry, 2025, 40(7): 232-240. doi: 10.12461/PKU.DXHX202408003

    10. [10]

      Ziheng Zhuang Xiao Xu Kin Shing Chan . Superdrugs for Superbugs. University Chemistry, 2024, 39(9): 128-133. doi: 10.3866/PKU.DXHX202309040

    11. [11]

      Xin Lv Hongxing Zhang Kaibo Duan Wenhui Dai Zhihui Wen Wei Guo Junsheng Hao . Lighting the Way Against Cancer: Photodynamic Therapy. University Chemistry, 2024, 39(5): 70-79. doi: 10.3866/PKU.DXHX202309090

    12. [12]

      Yuxia Luo Xiaoyu Xie Fangfang Chen . 药物递送魔法师——分子印迹聚合物. University Chemistry, 2025, 40(8): 202-210. doi: 10.12461/PKU.DXHX202409129

    13. [13]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    14. [14]

      Yu PengJiawei ChenYue YinYongjie CaoMochou LiaoCongxiao WangXiaoli DongYongyao Xia . Tailored cathode electrolyte interphase via ethylene carbonate-free electrolytes enabling stable and wide-temperature operation of high-voltage LiCoO2. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-0. doi: 10.1016/j.actphy.2025.100087

    15. [15]

      Siyi ZHONGXiaowen LINJiaxin LIURuyi WANGTao LIANGZhengfeng DENGAo ZHONGCuiping HAN . Targeting imaging and detection of ovarian cancer cells based on fluorescent magnetic carbon dots. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1483-1490. doi: 10.11862/CJIC.20240093

    16. [16]

      Peng Zhan . Practice and Reflection in Training Medicinal Chemistry Graduate Students. University Chemistry, 2024, 39(6): 112-121. doi: 10.3866/PKU.DXHX202402022

    17. [17]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    18. [18]

      Aiai WANGLu ZHAOYunfeng BAIFeng FENG . Research progress of bimetallic organic framework in tumor diagnosis and treatment. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1825-1839. doi: 10.11862/CJIC.20240225

    19. [19]

      Peng GENGGuangcan XIANGWen ZHANGHaichuang LANShuzhang XIAO . Hollow copper sulfide loaded protoporphyrin for photothermal-sonodynamic therapy of cancer cells. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1903-1910. doi: 10.11862/CJIC.20240155

    20. [20]

      Wenjing ZHANGXiaoqing WANGZhipeng LIU . Recent developments of inorganic metal complex-based photothermal materials and their applications in photothermal therapy. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2356-2372. doi: 10.11862/CJIC.20240254

Metrics
  • PDF Downloads(87)
  • Abstract views(2895)
  • HTML views(1063)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return