Citation: LV Jiang-jiang, HUANG Xing-liang, ZHAO Lei-lei, SUN Ren-shan, HU Long-wang, GONG Yan. Effects of acid-alkali treatment on properties and reactivity of ZSM-5 catalyst[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(6): 732-737. shu

Effects of acid-alkali treatment on properties and reactivity of ZSM-5 catalyst

  • Corresponding author: HUANG Xing-liang, xihuang@cup.edu.cn
  • Received Date: 2 December 2015
    Revised Date: 29 March 2016

Figures(6)

  • The effects of alkali-treatment and alkali-acid-treatment of ZSM-5 on the catalytic properties and catalytic performance of benzene alkylation with methanol were studied. The results showed that alkali treatment of ZSM-5 can remove the extra-framework Si species to enhance the diffusivity. However, it can also neutralize the strong acid sites of ZSM-5 and weaken the activation of methanol, reducing the reactivity of benzene alkylation with methanol. The twice acid treatment of alkali-treated ZSM-5 improve the catalytic performance because it can not only remove the extra-framework Al species, but also restore a part of strong acid sites neutralized in the process of alkali-treatment. Further research on the effects of alkalinity showed that the extra-framework Al species and Si species can be removed and a moderate particle size can be obtained after treatment of ZSM-5 with a moderate concentration of alkali. Moreover, the carbon deposition rate has been slowed down due to a decrease of strong acid sites. Therefore, the conversion of benzene can be improved by more than 15%.
  • 加载中
    1. [1]

      HU H, ZHANG Q, CEN J, LI X. High suppression of the formation of ethylbenzene in benzene alkylation[J]. Catal Commun, 2014,57:129-133. doi: 10.1016/j.catcom.2014.08.017

    2. [2]

      NICOLAU M P M, BARCIA P S, JOSE M GALLEGOS, JOS A C SILVA, ALRIO E RODRIGUES, BANGLIN CHEN. Single-and multicomponent vapor-phase adsorption of xylene lsomers and ethylbenzene in a microporous metal-organic framework[J]. J Phys Chem C, 2009,113(30):13173-13179. doi: 10.1021/jp9006747

    3. [3]

      LI Jing, SU Dong-gen. Methanol market present situation and the future development in our country[J]. Technol Econom Petrochem, 2013,29(4):12-16.  

    4. [4]

      ODEDAIRO T, ALKHATTEF S. Comparative study of zeolite catalyzed alkylation of benzene with alcohols of different chain length:H-ZSM-5 versus mordenite[J]. Catal Today, 2013,204:73-84. doi: 10.1016/j.cattod.2012.05.052

    5. [5]

      MOSES O, ADEBAJ O, HOWE R F, LONG M A. Methylation of benzene with methanol over zeolite catalysts in a low pressure flow reactor[J]. Catal Today, 2000,63(2/3):471-478.  

    6. [6]

      ZHAO Bo, LIU Min, TAN Wei, WU Hong-yu, GUO Xin-wen. The effect of Si-P-Mg modification on alkylation of benzene with methanol over nano-scal HZSM-5 zeolite[J]. Acta Pet Sin (Pet Process Sect), 2013,29(4):605-611.  

    7. [7]

      ABELLO, BONILLA, PEREZ-RAMIZEZ, JAVIER. Mesoporous ZSM-5 zeolite catalysts prepared by desilication with organic hydroxides and comparison with NaOH leaching[J]. Appl Catal A:Gen, 2009,364(1/3):191-198.

    8. [8]

      ROSARIO C R, JAVIER P R. Mesoporous ZSM-5 zeolites prepared by a two-step route comprising sodium aluminate and acid treatments[J]. Microporous Mesoporous Mater, 2010,128(1/3):91-100.  

    9. [9]

      LIU, WANG, WANG, LIU, GONG, DOU, YONG, AGUDAMU. Preparation of hierarchical high-silica ZSM-5 zeolite by desilication and their performance of catalytic cracking[J]. Acta Pet Sin (Pet Process Sect), 2012,28(S1):26-31.  

    10. [10]

      ZHANG Hui-zhen. Synthesis of hierarchical ZSM-5 and its application in benzene alkylation with methanol. Shanghai:East China University of Science and Technology, 2012.

    11. [11]

      ZHAO Bo. The alkylation of benzene with methanol over modified nanoscale HZSM-5. Dalian:Dalian University of Technology, 2013.

    12. [12]

      GROEN J C, JACOB A M. Optimal aluminum-assisted mesoporosity development in MFI zeolites by desilication[J]. J Phys Chem B, 2004,108:13062-13065. doi: 10.1021/jp047194f

  • 加载中
    1. [1]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    2. [2]

      Conghao Shi Ranran Wang Juli Jiang Leyong Wang . The Illustration on Stereoisomers of Macrocycles Containing Multiple Chiral Centers via Tröger Base-based Macrocycles. University Chemistry, 2024, 39(7): 394-397. doi: 10.3866/PKU.DXHX202311034

    3. [3]

      Xiaoyan Wang Yan Qi Lin Tang Shuwen Wang Huiling Wen Hongtao Gao . Improvement of the Quality Construction of Basic Chemistry Experimental Teaching Center under the Background of Education Digitization. University Chemistry, 2024, 39(7): 40-48. doi: 10.12461/PKU.DXHX202404124

    4. [4]

      Yan Su Yuzhen Pan Fuping Tian Xiuyun Wang Tieqi Xu Yongce Zhang Miao Cui Wenfeng Jiang . Construction and Practice of the National Chemical Experimental Teaching Demonstration Center under the Background of Digital Education. University Chemistry, 2024, 39(7): 218-222. doi: 10.12461/PKU.DXHX202406001

    5. [5]

      Duo Yang Xiangchun Li Wenyong Lai . Reform and Practice of a Diversified Teaching Model for Inorganic Chemistry Laboratory Focused on Innovation Ability Cultivation. University Chemistry, 2025, 40(4): 208-214. doi: 10.12461/PKU.DXHX202406006

    6. [6]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    7. [7]

      Ling Liu Haibin Wang Genrong Qiang . Curriculum Ideological and Political Design for the Comprehensive Preparation Experiment of Ethyl Benzoate Synthesized from Benzyl Alcohol. University Chemistry, 2024, 39(2): 94-98. doi: 10.3866/PKU.DXHX202304080

    8. [8]

      Wanmin Cheng Juan Du Peiwen Liu Yiyun Jiang Hong Jiang . Photoinitiated Grignard Reagent Synthesis and Experimental Improvement in Triphenylmethanol Preparation. University Chemistry, 2024, 39(5): 238-242. doi: 10.3866/PKU.DXHX202311066

    9. [9]

      Bin Wang Chuanli Qin Naiying Fan Zhibin Li Zhibiao Zhu Jiancong Liu Shaoping Sun . Construction and Practice of Digital Platform and Teaching Resources of Chemistry Experimental Teaching Center: A Case Study of Provincial Demonstration Center for Experimental Chemistry Education (Heilongjiang University). University Chemistry, 2024, 39(7): 193-199. doi: 10.12461/PKU.DXHX202405116

    10. [10]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    11. [11]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

    12. [12]

      Yingxian Wang Tianye Su Limiao Shen Jinping Gao Qinghe Wu . Introduction of Chinese Lacquer from the Perspective of Chemistry: Popularizing Chemistry in Lacquer and Inherit Lacquer Art. University Chemistry, 2024, 39(5): 371-379. doi: 10.3866/PKU.DXHX202312015

    13. [13]

      Jian Jin Jing Cheng Xueping Yang . Integration Practice of Organic Chemistry Experiment and Safety Education: Taking the Synthesis of Triphenylmethanol as an Example. University Chemistry, 2024, 39(3): 345-350. doi: 10.3866/PKU.DXHX202309010

    14. [14]

      Feng Han Fuxian Wan Ying Li Congcong Zhang Yuanhong Zhang Chengxia Miao . Comprehensive Organic Chemistry Experiment: Phosphotungstic Acid-Catalyzed Direct Conversion of Triphenylmethanol for the Synthesis of Oxime Ethers. University Chemistry, 2025, 40(3): 342-348. doi: 10.12461/PKU.DXHX202405181

    15. [15]

      Zhaohu Li Weidong Wang Yuhao Liu Mingzhe Han Lingling Wei Huan Jiao . Research on the Safety Management and Disposal of Chemical Laboratory Waste. University Chemistry, 2024, 39(10): 128-136. doi: 10.3866/PKU.DXHX202312090

    16. [16]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    17. [17]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    18. [18]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    19. [19]

      Lisen Sun Yongmei Hao Zhen Huang Yongmei Liu . Experimental Teaching Design for Viscosity Measurement Serves the Optimization of Operating Conditions for Kitchen Waste Treatment Equipment. University Chemistry, 2024, 39(2): 52-56. doi: 10.3866/PKU.DXHX202307063

    20. [20]

      Kun Xu Xinxin Song Zhilei Yin Jian Yang Qisheng Song . Comprehensive Experimental Design of Preferential Orientation of Zinc Metal by Heat Treatment for Enhanced Electrochemical Performance. University Chemistry, 2024, 39(4): 192-197. doi: 10.3866/PKU.DXHX202309050

Metrics
  • PDF Downloads(0)
  • Abstract views(3335)
  • HTML views(1221)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return