Citation: ZHANG Qian-wei, WANG Xue-tao. Preparation and properties of Ce-Mn/ZSM-5 catalysts modified with different metals[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(10): 1265-1272. shu

Preparation and properties of Ce-Mn/ZSM-5 catalysts modified with different metals

  • Corresponding author: WANG Xue-tao, wxt7682@163.com
  • Received Date: 5 June 2019
    Revised Date: 13 August 2019

    Fund Project: National Natural Science Foundation of China 50806020Project Supported by National Natural Science Foundation of Henan Province 182300410256Henan Science and Technology Innovation Talent Program (Outstanding Youth) 114100510010The project was supported by National Natural Science Foundation of China (50806020), Henan Science and Technology Innovation Talent Program (Outstanding Youth) (114100510010), Project Supported by National Natural Science Foundation of Henan Province(182300410256)

Figures(9)

  • A series of Y-Ce-Mn/ZSM-5 catalysts (Y=Co, Cr, Cu, La, Zr) were prepared by impregnation method. Combined with the results of the NH3-SCR activity test, the optimal activity temperature window and maximum denitration efficiency of various catalysts were obtained. The catalysts were characterized by XRD, TEM, H2-TPR, NH3-TPD and in situ DRIFTS. Through the characterization and denitration test, it was shown that the maximum denitration efficiency of all modified catalysts except Cr modified one was higher than 98%, and Cu-Ce-Mn/ZSM-5 showed the best performance among the catalysts, whose catalytic conversion at 375℃ was 99.22%. This is attributed to the highly dispersed surface metal oxide species, more surface sites with weak acidity and more species with high reducibility.
  • 加载中
    1. [1]

      LI Yan-shun, ZHENG Yi-xuan, LIU Meng-yao, ZHENG Bo, WANG Ting, TONG Dan, LI Jing-ping, WANG Pu-cai, LIN Jin-tai, ZHANG Qiang. Satellite-based observations of changes in nitrogen oxides over the Beijing-Tianjin-Hebei region from 2011 to 2017[J]. J Environ Sci-China, 2018,38(10):3797-3806.  

    2. [2]

      COGHLAN A. The curious case of NOx pollution[J]. New Sci, 2015,227(3041):10-11. doi: 10.1016/S0262-4079(15)31295-1

    3. [3]

      KNIBBS L D, CORTES DE WATERMAN A M, TOELLE B G, GUO Y, DENISON L, JALALUDIN B, MARKS G B, WILLIAMS G M. The Australian Child Health and Air Pollution Study (ACHAPS): A national population-based cross-sectional study of long-term exposure to outdoor air pollution, asthma, and lung function[J]. Environ Int, 2018,120:394-403. doi: 10.1016/j.envint.2018.08.025

    4. [4]

      WANG Ai-juan, SUN Li-li, ZHANG Jing-yao. Analysis on "Standard for Pollutant Emission from Boilers"(GB13271-2014)[J]. Environ Res Monitor, 2017,30(3):76-78.  

    5. [5]

      YANG Yan-long. Emissions reduction of NOx in coal-fired power plant and simple analysis of SCR flue gas denitration technology[J]. Energy Environ Prot, 2017,31(2):31-35, 39. doi: 10.3969/j.issn.1006-8759.2017.02.010

    6. [6]

      CHEN C, CAO Y, LIU S, CHEN J M, JIA W B. Review on the latest developments in modified vanadium-titanium-based SCR catalysts[J]. Chin J Catal, 2018,39(8):1347-1365. doi: 10.1016/S1872-2067(18)63090-6

    7. [7]

      JIANG L J, LIU Q C, RAN G J, KONG G J, REN M, YANG S, LI J, JIANG L. V2O5-modified Mn-Ce/AC catalyst with high SO2 tolerance for low-temperature NH3-SCR of NO[J]. Chem Eng J, 2019,370:810-821. doi: 10.1016/j.cej.2019.03.225

    8. [8]

      WEI Y, FAN H, WANG R. Transition metals (Co, Zr, Ti) modified iron-samarium oxide as efficient catalysts for selective catalytic reduction of NOx at low-temperature[J]. Appl Surf Sci, 2018,459:63-73. doi: 10.1016/j.apsusc.2018.07.151

    9. [9]

      LI Xiao-dong, LYU Gang, SONG Chong-lin, SONG Jin-ou, BIN Feng, WU Shao-hua. Mechanism of the Low-Temperature SCR reaction on metal modified ZSM-5 catalysts[J]. J Combust Sci Technol, 2014,20(4):341-347.  

    10. [10]

      CARJA G, KAMESHIMA Y, OKADA K, MADHUSOODANA C D. Mn-Ce/ZSM5 as a new superior catalyst for NO reduction with NH3[J]. Appl Catal B: Environ, 2007,73(1):60-64.  

    11. [11]

      WANG T, LIU H, ZHANG X, LIU J, ZHANG Y, GUO Y, SUN B. Catalytic conversion of NO assisted by plasma over Mn-Ce/ZSM5-multi-walled carbon nanotubes composites: Investigation of acidity, activity and stability of catalyst in the synergic system[J]. Appl Surf Sci, 2018,457:187-199. doi: 10.1016/j.apsusc.2018.06.216

    12. [12]

      ZHOU G, ZHONG B, WANG W, GUAN X, HUANG B, YE D, WU H. In situ DRIFTS study of NO reduction by NH3 over Fe-Ce-Mn/ZSM-5 catalysts[J]. Catal Today, 2011,175(1):157-163. doi: 10.1016/j.cattod.2011.06.004

    13. [13]

      PENG C, LIU Z, YONEZAWA Y, YANABA Y, KATADA N, MURAYAMA I, SEGOSHI S, OKUBO T, WAKIHARA T. Ultrafast post-synthesis treatment to prepare ZSM-5@Silicalite-1 as a core-shell structured zeolite catalyst[J]. Microporous Mesoporous Mater, 2019,277:197-202. doi: 10.1016/j.micromeso.2018.10.036

    14. [14]

      RUI J, LYU J, HU H, ZHANG Q, WANG Q, LI X. Synthesized high-silica hierarchical porous ZSM-5 and optimization of its reaction conditions in benzene alkylation with methanol[J]. Chin Chem Lett, 2019,30(3):757-761. doi: 10.1016/j.cclet.2018.09.016

    15. [15]

      ZHU L, ZHANG L, QU H, ZHONG Q. A study on chemisorbed oxygen and reaction process of Fe-CuOx/ZSM-5 via ultrasonic impregnation method for low-temperature NH3-SCR[J]. J Mol Catal A: Chem, 2015,409:207-215. doi: 10.1016/j.molcata.2015.08.029

    16. [16]

      AND T G D, KANNAN M P. X-ray Diffraction (XRD) studies on the chemical states of some metal species in cellulosic chars and the ellingham diagrams[J]. Energy Fuels, 2007,21(2):596-601. doi: 10.1021/ef060395t

    17. [17]

      PANG L, FAN C, SHAO L, SONG K, YI J, CAI X, WANG J, KANG M, LI T. The Ce doping Cu/ZSM-5 as a new superior catalyst to remove NO from diesel engine exhaust[J]. Chem Eng J, 2014,253:394-401. doi: 10.1016/j.cej.2014.05.090

    18. [18]

      LIU X, WU X, WENG D, SHI L. Modification of Cu/ZSM-5 catalyst with CeO2 for selective catalytic reduction of NOx with ammonia[J]. J Rare Earths, 2016,34(10):1004-1009. doi: 10.1016/S1002-0721(16)60127-8

    19. [19]

      XU W, ZHANG G, CHEN H, ZHANG G, HAN Y, CHANG Y, GONG P. Mn/beta and Mn/ZSM-5 for the low-temperature selective catalytic reduction of NO with ammonia: Effect of manganese precursors[J]. Chin J Catal, 2018,39(1):118-127. doi: 10.1016/S1872-2067(17)62983-8

    20. [20]

      NANBA T, MASUKAWA S, OGATA A, UCHISAWA J, OBUCHI A. Active sites of Cu-ZSM-5 for the decomposition of acrylonitrile[J]. Appl Catal B: Environ, 2005,61(3):288-296.  

    21. [21]

      SOWADE T, LIESE T, SCHMIDT C, SCHVTZE F W, YU X, BERNDT H, GRVNERT W. Relations between structure and catalytic activity of Ce-In-ZSM-5 catalysts for the selective reduction of NO by methane: Ⅱ. Interplay between the CeO2 promoter and different indium sites[J]. J Catal, 2004,225(1):105-115. doi: 10.1016/j.jcat.2004.03.026

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Feibin WeiYongfang RaoYu HuangWei WangHui Mei . The new challenges for the development of NH3-SCR catalysts under new situation of energy transition in power generation industry. Chinese Chemical Letters, 2024, 35(6): 108931-. doi: 10.1016/j.cclet.2023.108931

    3. [3]

      Shanyuan BiJin ZhangDengchao PengDanhong ChengJianping ZhangLupeng HanDengsong Zhang . Improved N2 selectivity for low-temperature NOx reduction over etched ZSM-5 supported MnCe oxide catalysts. Chinese Chemical Letters, 2025, 36(5): 110295-. doi: 10.1016/j.cclet.2024.110295

    4. [4]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    5. [5]

      Jinpeng DuJunlin ChenYulong ShanTongliang ZhangYu SunZhongqi LiuXiaoyan ShiWenpo ShanYunbo YuHong He . Insight into the effects of C3H6 on fresh and hydrothermally aged Cu-SSZ-39 catalysts. Chinese Chemical Letters, 2025, 36(3): 110019-. doi: 10.1016/j.cclet.2024.110019

    6. [6]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    7. [7]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    8. [8]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    9. [9]

      Yang WANGXiaoqin ZHENGYang LIUKai ZHANGJiahui KOULinbing SUN . Mn single-atom catalysts based on confined space: Fabrication and the electrocatalytic oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2175-2185. doi: 10.11862/CJIC.20240165

    10. [10]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    13. [13]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    14. [14]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    15. [15]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    16. [16]

      Jiahui YUJixian DONGYutong ZHAOFuping ZHAOBo GEXipeng PUDafeng ZHANG . The morphology control and full-spectrum photodegradation tetracycline performance of microwave-hydrothermal synthesized BiVO4:Yb3+,Er3+ photocatalyst. Journal of Fuel Chemistry and Technology, 2025, 53(3): 348-359. doi: 10.1016/S1872-5813(24)60514-1

    17. [17]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    18. [18]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    19. [19]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    20. [20]

      Fangxuan Liu Ziyan Liu Guowei Zhou Tingting Gao Wenyu Liu Bin Sun . Hollow structured photocatalysts. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-. doi: 10.1016/j.actphy.2025.100071

Metrics
  • PDF Downloads(8)
  • Abstract views(1180)
  • HTML views(67)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return