Citation: Zhang Junrui, Gao Yu, Jiang Guojun. Research Progress in Functional Polyurethanes[J]. Chemistry, ;2017, 80(11): 1027-1035. shu

Research Progress in Functional Polyurethanes

  • Corresponding author: Zhang Junrui, jrzhang@zjc.zjut.edu.cn
  • Received Date: 15 February 2017
    Accepted Date: 4 September 2017

Figures(6)

  • Polyurethanes are a class of special polymers with high tunable properties, and have been widely used in many fields due to the versatility in selection of raw materials. In this article, the trends in the development status and research progress of high performance polyurethanes were introduced, the application and research orientation for functional polyurethanes were summarized, and the application problems of polyurethanes in different fields were discussed. Finally, the development prospect of functional polyurethane materials in different fields was prospected.
  • 加载中
    1. [1]

      P H Chen, Y F Yang, D K Lee et al. Adv. Polym. Technol., 2007, 26(1):33~40. 

    2. [2]

      M A Hood, B B Wang. Polymer, 2010, 51(10):2191~2198. 

    3. [3]

      D K Chattopadhyay, K V S N Raju. Prog. Polym. Sci., 2007, 32(3):352~418. 

    4. [4]

      C H Tsou, H T Lee, H A Tsai et al. Polym. Degrad. Stabil., 2013, 98(2):643~650. 

    5. [5]

      L Poussard, F Burel, J P Couvercelle et al. Biomaterials, 2004, 25(17):3473~3483. 

    6. [6]

      A Noreen, K M Zia, M Zuber et al. Prog. Org. Coat., 2016, 91:25~32. 

    7. [7]

      H Mutlu, M A R Meier. Eur. J. Lipid Sci. Tech., 2010, 112(1):10~30. 

    8. [8]

       

    9. [9]

      S Miao, P Wang, Z Su et al. Acta Biomater., 2014, 14(4):1692~1704.

    10. [10]

      L Hojabri, X Kong, S S Narine. Biomacromolecules, 2009, 10(4):884~891. 

    11. [11]

      L Hojabri, X Kong S S Narine. J. Polym. Sci. Polym. Chem., 2010, 48(15):3302~3310. 

    12. [12]

      L Hojabri, X Kong S S Narine. Biomacromolecules, 2010, 11(4):911~918. 

    13. [13]

      S Miao, L Su, P Wang et al. Eur. J. Lipid Sci. Technol., 2012, 114(10):1165~1174. 

    14. [14]

      A B Chaudhari, A Anand, S D Rajput et al. Prog. Org. Coat., 2013, 76(12):1779~1785. 

    15. [15]

      C E Hoyle, C N Bowman. Angew. Chem. Int. Ed., 2010, 49(9):1540~1573. 

    16. [16]

      C Q Fu, J C Liu, H Y Xia et al. Prog. Org. Coat., 2015, 83:19~25. 

    17. [17]

      G M Wu, Z W Kong, H Huang et al. J. Appl. Polym. Sci., 2009, 113(5):2894~2901. 

    18. [18]

      F Zia, K M Zia, S Kamal et al. Carbohyd. Polym., 2015, 134:784~798. 

    19. [19]

      D Y Yang, H Q Zhang, X S Rong et al. Plast. Rubber Compos., 2012, 41(10):425~429. 

    20. [20]

      S J Lee, B K Kim. Carbohyd. Polym., 2012, 87(2):1803~1809. 

    21. [21]

      X D Cao, Y Z Tao, L A Lucia et al. J. Appl. Polym. Sci., 2010, 116(3):1299~1305. 

    22. [22]

      R Duarah, Y P Singh, B B Mandal et al. New J. Chem., 2016, 40(6):5152~5163. 

    23. [23]

      X Zhang, Y Zhang, J J Liao et al. J. Appl. Polym. Sci., 2015, 132(32):1~10. 

    24. [24]

      A Biswas, S Kim, Z Q He et al. Int. J. Polym. Anal. Charact., 2015, 20(1):1~9. 

    25. [25]

      K M Zia, F Zia, M Zuber et al. Int. J. Biol. Macromol., 2015, 79:377~387. 

    26. [26]

      J C Wang, X G Ying, X Li et al. Mater. Lett., 2014, 126:263~266. 

    27. [27]

      L X Li, X G Ying, J Q Liu et al. Mater. Lett., 2015, 143:248~251. 

    28. [28]

      H Daemi, M Barikani, M Barmar. Int. J. Biol. Macromol., 2014, 66(3):212~220.

    29. [29]

      H Daemi, M Barikani. Carbohyd. Polym., 2014, 112(21):638~647.

    30. [30]

      H Daemi, M Barikani, M Barmar. Carbohyd. Polym., 2013, 92(1):490~496. 

    31. [31]

      H Daemi, M Barikani, M Barmar. Carbohyd. Polym., 2013, 95(2):630~636. 

    32. [32]

      J Kumirska, M X Weinhold, J Thöming et al. Polymers, 2011, 31(4):1875~1901. 

    33. [33]

      V K Mourya, N N Inamdar. React. Funct. Polym., 2008, 68(6):1013~1051. 

    34. [34]

      A Usman, K M Zia, M Zuber et al. Int. J. Biol. Macromol., 2016, 86:630~645. 

    35. [35]

      M Matsui, M Munaro, L Akcelrud. Polym. Int., 2010, 59(8):1090~1098. 

    36. [36]

      M Matsui, L Ono, L Akcelrud. Polym. Test., 2012, 31(1):191~196. 

    37. [37]

      M Barikani, H Honarkar, M Barikani. Monatsh. Chem., 2010, 141(6):653~659. 

    38. [38]

      K M Zia, K Mahmood, M Zuber et al. Int. J. Biol. Macromol., 2013, 59(4):320~327. 

    39. [39]

      K M Zia, N A Qureshi, M Mujahid et al. Int. J. Biol. Macromol., 2013, 59(4):313~319. 

    40. [40]

      K M Zia, M Zuber, M J Saif et al. Int. J. Biol. Macromol., 2013, 62(62):670~676. 

    41. [41]

      A Saralegi, S C M Fernandes, A A Varona et al. Biomacromolecules, 2013, 14(12):4475~4482. 

    42. [42]

      S H Chen, C T Tsao, C H Chang et al. Carbohyd. Polym., 2012, 88(4):1483~1487. 

    43. [43]

      Z Wu, Z Chen, X Du et al. Science, 2004, 305, 1273~1276. 

    44. [44]

      R H Baughman, A A Zakhidov, W A D Heer. Science, 2002, 297(5582):787~792. 

    45. [45]

      E Pop, D Mann, Q Wang et al. Nano. Lett., 2006, 6(1):96~100. 

    46. [46]

      G Begtrup, K Ray, B Kessler et al. Phys. Rev. Lett., 2007, 99(23):155901~155904.

    47. [47]

      H Souri, I W Nam, H K Lee. Compos. Sci. Technol., 2015, 121(14):41~48.

    48. [48]

      Z H Zeng, M J Chen, H Jin et al. Carbon, 2016, 96:768~777. 

    49. [49]

      C Lee, X Wei, J W Kysar et al. Science, 2008, 321(5887):385~388. 

    50. [50]

      A K Appel, R Thomann, R Mülhaupt. Polymer, 2012, 53(22):4931~4939. 

    51. [51]

      R M Hodlur, M K Rabinal. Compos. Sci. Technol., 2014, 90(90):160~165. 

    52. [52]

      Y L Huang, A Baji, H W Tien et al. Carbon, 2012, 50(10):3473~3481. 

    53. [53]

      K H Liao, Y T Park, A Abdala et al. Polymer, 2013, 54(17):4555~4559. 

    54. [54]

      J S Leng, X Lan, Y J Liu et al. Prog. Mater. Sci., 2011, 56(7):1077~1135. 

    55. [55]

       

    56. [56]

       

    57. [57]

      S Chen, J Hu, H Zhao. Compos. Sci. Technol., 2010, 70(10):1437~1443. 

    58. [58]

      S A Turner, J Zhou, S S Sheiko et al. ACS Appl. Mater. Interf., 2014, 6(11):8017~8021. 

    59. [59]

      J J Li, R William, T Xie. Polymer, 2011, 52(23):5320~5325. 

    60. [60]

      J Zotzmann, M Behl, Y K Feng et al. Adv. Funct. Mater., 2010, 20(20):3583~3594. 

    61. [61]

      J Zotzmann, M Behl, D Hofmann et al. Adv. Mater., 2010, 22(31):3424~3429. 

    62. [62]

      S Chen, J Hu, H Zhao. Composi. Sci. Technol., 2010, 70(10):1437~1443. 

    63. [63]

      T Xie. Polymer, 2011, 52(22):4985~5000. 

    64. [64]

      M Behl, K Kratz, J Zotzmann et al. Adv. Mater., 2013, 25(32):4466~4469. 

    65. [65]

      S S Zeng, D Y Zhang, W H Huang et al. Nat. Chem., 2016, 7:11802. 

    66. [66]

      Z Chi, X Zhang, B Xu et al. Chem. Soc. Rev., 2012, 41(31):3878~3896.

    67. [67]

      Y Sagara, T Kato. Nat. Chem., 2009, 1(8):605~610. 

    68. [68]

      F Ciardelli, G Ruggeri, A Pucc. Chem. Soc. Rev., 2013, 42(3):857~870. 

    69. [69]

      S L Potisek, D A Davis, N R Sottos et al. J. Am. Chem. Soc., 2007, 129(45):13808~13809. 

    70. [70]

       

    71. [71]

    72. [72]

       

    73. [73]

      D A Davis, A Hamilton, J Yang et al. Nature, 2009, 459(7243):68~72. 

    74. [74]

      G O'Bryan, B M Wong, J R McElhanon. ACS Appl. Mater. Interf., 2010, 6(2):1594~1600. 

    75. [75]

      B A Beiermann, S L B Kramer, J S Moore et al. ACS Macro Lett., 2012, 1(1):163~166. 

    76. [76]

      B A Beiermann, S L B Kramer, P A May et al. Adv. Funct. Mater., 2014, 24(11):1529~1537. 

    77. [77]

      P A May, N F Munaretto, M B Hamoy et al. ACS Macro Lett., 2016, 5(2):177~180. 

    78. [78]

      G R Gossweiler, T B Kouznetsova, S L Craig. J. Am. Chem. Soc., 2015, 137(19):6148~6151. 

    79. [79]

      J W Kim, Y Jung, G W Coates et al. Macromolecules, 2015, 48(5):1335~1342. 

    80. [80]

      C M Degen, P A May, J S Moore et al. Macromolecules, 2013, 46(46):8917~8921.

    81. [81]

      C K Lee, D A Davis, S R White et al. J. Am. Chem. Soc., 2010, 132(45):16107~16111. 

    82. [82]

      H Zhang, Y J Chen, Y J Lin. Macromolecules, 2014, 47(19):6783~6790. 

  • 加载中
    1. [1]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    2. [2]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    3. [3]

      Kai Yang Gehua Bi Yong Zhang Delin Jin Ziwei Xu Qian Wang Lingbao Xing . Comprehensive Polymer Chemistry Experiment Design: Preparation and Characterization of Rigid Polyurethane Foam Materials. University Chemistry, 2024, 39(4): 206-212. doi: 10.3866/PKU.DXHX202308045

    4. [4]

      Tengjiao Wang Tian Cheng Rongjun Liu Zeyi Wang Yuxuan Qiao An Wang Peng Li . Conductive Hydrogel-based Flexible Electronic System: Innovative Experimental Design in Flexible Electronics. University Chemistry, 2024, 39(4): 286-295. doi: 10.3866/PKU.DXHX202309094

    5. [5]

      Xiaofang DONGYue YANGShen WANGXiaofang HAOYuxia WANGPeng CHENG . Research progress of conductive metal-organic frameworks. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 14-34. doi: 10.11862/CJIC.20240388

    6. [6]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    7. [7]

      Zhaoxuan ZHULixin WANGXiaoning TANGLong LIYan SHIJiaojing SHAO . Application of poly(vinyl alcohol) conductive hydrogel electrolytes in zinc ion batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 893-902. doi: 10.11862/CJIC.20240368

    8. [8]

      Bowen YangRui WangBenjian XinLili LiuZhiqiang Niu . C-SnO2/MWCNTs Composite with Stable Conductive Network for Lithium-based Semi-Solid Flow Batteries. Acta Physico-Chimica Sinica, 2025, 41(2): 2310024-0. doi: 10.3866/PKU.WHXB202310024

    9. [9]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    10. [10]

      Xuexia He Zhibin Lei Pei Chen Qi Li Weiyu Deng Peng Hu . 以“溶度积规则”指导电荷转移共晶沉淀析出——材料类专业无机化学教学改革案例. University Chemistry, 2025, 40(8): 1-10. doi: 10.12461/PKU.DXHX202410099

    11. [11]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    12. [12]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    13. [13]

      Xiyuan Su Zhenlin Hu Ye Fan Xianyuan Liu Xianyong Lu . Change as You Want: Multi-Responsive Superhydrophobic Intelligent Actuation Material. University Chemistry, 2024, 39(5): 228-237. doi: 10.3866/PKU.DXHX202311059

    14. [14]

      Zhongrui Wang Yuwen Meng Xu Wang . 双层水凝胶的制备及其pH响应变形实验. University Chemistry, 2025, 40(8): 255-264. doi: 10.12461/PKU.DXHX202410038

    15. [15]

      Di WURuimeng SHIZhaoyang WANGYuehua SHIFan YANGLeyong ZENG . Construction of pH/photothermal dual-responsive delivery nanosystem for combination therapy of drug-resistant bladder cancer cell. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1679-1688. doi: 10.11862/CJIC.20240135

    16. [16]

      Baohua LÜYuzhen LI . Anisotropic photoresponse of two-dimensional layered α-In2Se3(2H) ferroelectric materials. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1911-1918. doi: 10.11862/CJIC.20240105

    17. [17]

      Xinzhe HUANGLihui XUYue YANGLiming WANGZhangyong LIUZhongjian WANG . Preparation and visible light responsive photocatalytic properties of BiSbO4/BiOBr. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 284-292. doi: 10.11862/CJIC.20240212

    18. [18]

      Li'na ZHONGJingling CHENQinghua ZHAO . Synthesis of multi-responsive carbon quantum dots from green carbon sources for detection of iron ions and L-ascorbic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 709-718. doi: 10.11862/CJIC.20240280

    19. [19]

      Xiaojing TianZhichun HuangQingsong ZhangXu WangNing YangNanping Deng . PNIPAm Thermo-Responsive Nanofibers Mats: Morphological Stability and Response Behavior under Cross-Linking. Acta Physico-Chimica Sinica, 2024, 40(4): 2304037-0. doi: 10.3866/PKU.WHXB202304037

    20. [20]

      Yinuo Wu Jiantao Ye Xie Zhou Yu Qian Lei Guo . Teaching Design of Basic Chemistry Based on PBL Methodology for Medical Undergraduates: A Case Study on “Osmotic Pressure of Solution”. University Chemistry, 2024, 39(3): 149-157. doi: 10.3866/PKU.DXHX202309077

Metrics
  • PDF Downloads(11)
  • Abstract views(1591)
  • HTML views(338)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return