Citation: Li Zhimin, Qiao Yu, Che Guangbo. Preparations and Properties of Amino Functionalized Metal Organic Framework Photocatalysts[J]. Chemistry, ;2018, 81(4): 297-302, 348. shu

Preparations and Properties of Amino Functionalized Metal Organic Framework Photocatalysts

  • Corresponding author: Che Guangbo, guangboche@jlnu.edu.cn
  • Received Date: 1 December 2017
    Accepted Date: 3 January 2018

Figures(9)

  • Compared with traditional metal-organic frameworks (MOFs), the amino functionalized MOFs are very attractive materials. They have both the advantages of MOFs and amino functional groups, such as high specific surface area, adjustable pore size, and easy post-modification. Novel functionalized MOFs, which have potential applications in gas storage, drug carriers, selective adsorption of gas molecules and catalysis, can be obtained through some simple chemical reactions. This paper summarizes the recent research progress of amino functionalized MOFs in catalysis and adsorption fields, including their preparation methods, influencing factors, environmental applications. Finally, the future development of amino functionalized MOFs is also prospected.
  • 加载中
    1. [1]

      L A Neves, N Barreto, J C Crespo et al. Procedia Eng., 2012, 44:1991~1992. 

    2. [2]

      P Silva, S M Vilela, J P Tomé et al. Chem. Soc. Rev., 2015, 44(19):6774~6803. 

    3. [3]

      M Eddaoudi, D F Sava, J F Eubank et al. Chem. Soc. Rev., 2015, 44(1):228~249. 

    4. [4]

      D Fairen-Jimenez, S A Moggach, M T Wharmby et al. J. Am. Chem. Soc., 2011, 133(23):8900~8902. 

    5. [5]

      K Li, D H Olson, J Y Lee et al. Adv. Funct. Mater., 2008, 18(15):2205~2214. 

    6. [6]

      W Yan, L J Han, H L Jia et al. Inorg. Chem., 2016, 55(17):8816~8821. 

    7. [7]

      J Shen, G Liu, K Huang et al. J. Membr. Sci., 2016, 513:155~165. 

    8. [8]

      R Q Zou, H Sakurai, S Han et al. J. Am. Chem. Soc., 2007, 129(27):8402~8403. 

    9. [9]

      F M Kievit, M Zhang. Adv. Mater., 2011, 23(36):217~247. 

    10. [10]

      M Kostić, M Radović, J Mitrović et al. J. Iran. Chem. Soc., 2013, 11(2):565~578. 

    11. [11]

      M Eddaoudi, J Kim, N Rosi et al. Science, 2002, 295(5554):469~472. 

    12. [12]

      K Leus, S Couck, M Vandichel et al. Phys. Chem. Chem. Phys., 2012, 14(44):15562~15570. 

    13. [13]

      M Kandiah, S Usseglio, S Svelle et al. J. Mater. Chem., 2010, 20(44):9848~9851. 

    14. [14]

      Z H Rada, H R Abid, H Sun et al. J. Chem. Eng. Data, 2015, 60(7):2152~2161. 

    15. [15]

    16. [16]

      J G Santaclara, A I Olivos-Suarez, A Gonzalez-Nelson et al. Chem. Mater., 2017, 29(21):8963~8967. 

    17. [17]

      G Férey. Chem. Soc. Rev., 2008, 37(1):191~214. 

    18. [18]

      Z Xiang, C Fang, S Leng et al. J. Mater. Chem. A, 2014, 2(21):7662~7665. 

    19. [19]

      Y Wang, H Ge, Y Wu et al. Talanta, 2014, 129:100~105. 

    20. [20]

      N Gargiulo, A Peluso, P Aprea et al. Adv. Sci. Lett., 2017, 23(6):6010~6011. 

    21. [21]

      N Gargiulo, A Peluso, P Aprea et al. Adv. Sci. Lett., 2017, 23(6):6010~6011. 

    22. [22]

      R Banerjee. Proc. Indian Natn. Sci. Acad., 2012, 78(4):693~699.

    23. [23]

      A R Millward, O M Yaghi. J. Am. Chem. Soc., 2005, 127(51):17998~17999. 

    24. [24]

      L Xiang, L Sheng, C Wang et al. Adv. Mater., 2017, 29(32).

    25. [25]

      Y S Bae, O K Farha, J T Hupp et al. J. Mater. Chem., 2009, 19(15):2131~2134. 

    26. [26]

      M T Luebbers, T J Wu, L J Shen et al. Langmuir, 2010, 26(13):11319~11329. 

    27. [27]

      N A Khan, B K Jung, Z Hasan et al. J. Hazard. Mater., 2015, 282:194~200. 

    28. [28]

      S Couck, E Gobechiya, C E A Kirschhock et al. ChemSusChem, 2012, 5(4):740~750. 

    29. [29]

      H Furukawa, K E Cordova, M O'Keeffe et al. Science, 2013, 341(6149):469~472.

    30. [30]

      D F Liu, Y B Wu, Q B Xia et al. Adsorption, 2013, 19:25~37. 

    31. [31]

      A M Fracaroli, H Furukawa, M Suzuki et al. J. Am. Chem. Soc., 2014, 136(25):8863~8866. 

    32. [32]

      R W Flaig, T M Osborn Popp, A M Fracaroli et al. J. Am. Chem. Soc., 2017, 139(35):12125~12128. 

    33. [33]

      H Hu, T Zhang, S Yuan et al. Adsorption, 2017, 23(1):73~85. 

    34. [34]

      Z Wang, S M Cohen. J. Am. Chem. Soc., 2007, 129(41):12368~12369. 

    35. [35]

      M J Ingleson, J P Barrio, J B Guilbaud et al. Chem. Commun., 2008, (23):2680~2682. 

    36. [36]

      A Demessence, D M D'Alessandro, M L Foo et al. J. Am. Chem. Soc., 2009, 131:8784~8786. 

    37. [37]

      E Haque, J E Lee, I T Jang et al. J. Hazard. Mater., 2010, 181(1):535~542. 

    38. [38]

      E Haque, J W Jun, S H Jhung. J. Hazard. Mater., 2011, 185(1):507~511. 

    39. [39]

      Q Chen, Q He, M Lv et al. Appl. Surf. Sci., 2015, 327:77~85. 

    40. [40]

      R Bibi, L Wei, Q Shen et al. J. Chem. Eng. Data, 2017, 62(5):1615~1622. 

    41. [41]

      N Yin, K Wang, L Wang et al. Chem. Eng. J., 2016, 306:619~628. 

    42. [42]

      D Zhao, L Chen, M Xu et al. ACS Sustain. Chem. Eng., 2017, 5(11):10290~10297. 

    43. [43]

      X Luo, L Ding, J Luo. J. Chem. Eng. Data, 2015, 60(6):1732~1743. 

    44. [44]

      N Yin, K Wang, L Wang et al. Chem. Eng. J., 2016, 306:619~628. 

    45. [45]

      K Wang, J Gu, N Yin. Ind. Eng. Chem. Res., 2017, 56(7):1880~1887. 

    46. [46]

      X He, X Min, X Luo. J. Chem. Eng. Data, 2017, 62(4):1519~1529. 

    47. [47]

      B Liu, F Yang, Y Zou et al. J. Chem. Eng. Data, 2014, 59(5):1476~1482. 

    48. [48]

      N A Khan, S H Jhung. Angew. Chem. Int. Ed., 2012, 124(5):1198~1201. 

    49. [49]

      Y P Wu, X Q Wu, J F Wang et al. Cryst. Growth Des., 2016, 16(4):2309~2316. 

    50. [50]

       

    51. [51]

      J Guo, J F Ma, J J Li et al. Cryst. Growth Des., 2012, 12(12):6074~6082. 

    52. [52]

      R K Zeidan, M E Davis. J. Catal., 2007, 247(2):379~382. 

    53. [53]

      K Motokura, M Tada, Y Iwasawa. J. Am. Chem. Soc., 2007, 129(31):9540~9541. 

    54. [54]

      Z G Sun, G Li, H O Liu et al. Appl. Catal. A-Gen., 2013, 466:98~104. 

    55. [55]

      L Shen, S Liang, W Wu et al. Dalton Transac., 2013, 42(37):13649~13657. 

    56. [56]

      D K Wang, R K Huang, W J Liu et al. ACS Catal., 2014, 4(12):4254~4260. 

    57. [57]

      M Nourian, F Zadehahmadi, R Kardanpour et al. Catal. Commun., 2017, 94:42~46. 

    58. [58]

      Y Li, H Xu, S Ouyang et al. Phys. Chem. Chem. Phys., 2016, 18(11):7563~7572. 

    59. [59]

      C Caratelli, J Hajek, F G Cirujano et al. J. Catal., 2017, 352:401~414. 

    60. [60]

      F X Li Xamena, A Abad, A Corma et al. J. Catal., 2007, 250(2):294~298. 

    61. [61]

      D Jiang, T Mallat, D M Meier et al. J. Catal., 2010, 270(1):26~33. 

  • 加载中
    1. [1]

      Fugui XIDu LIZhourui YANHui WANGJunyu XIANGZhiyun DONG . Functionalized zirconium metal-organic frameworks for the removal of tetracycline from water. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 683-694. doi: 10.11862/CJIC.20240291

    2. [2]

      Peiran ZHAOYuqian LIUCheng HEChunying DUAN . A functionalized Eu3+ metal-organic framework for selective fluorescent detection of pyrene. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 713-724. doi: 10.11862/CJIC.20230355

    3. [3]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    4. [4]

      Tiantian MASumei LIChengyu ZHANGLu XUYiyan BAIYunlong FUWenjuan JIHaiying YANG . Methyl-functionalized Cd-based metal-organic framework for highly sensitive electrochemical sensing of dopamine. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 725-735. doi: 10.11862/CJIC.20230351

    5. [5]

      Lu XUChengyu ZHANGWenjuan JIHaiying YANGYunlong FU . Zinc metal-organic framework with high-density free carboxyl oxygen functionalized pore walls for targeted electrochemical sensing of paracetamol. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 907-918. doi: 10.11862/CJIC.20230431

    6. [6]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    7. [7]

      Shiyan Cheng Yonghong Ruan Lei Gong Yumei Lin . Research Advances in Friedel-Crafts Alkylation Reaction. University Chemistry, 2024, 39(10): 408-415. doi: 10.12461/PKU.DXHX202403024

    8. [8]

      Wei Li Jinfan Xu Yongjun Zhang Ying Guan . 共价有机框架整体材料的制备及食品安全非靶向筛查应用——推荐一个仪器分析综合化学实验. University Chemistry, 2025, 40(6): 276-285. doi: 10.12461/PKU.DXHX202406013

    9. [9]

      Xiaoling LUOPintian ZOUXiaoyan WANGZheng LIUXiangfei KONGQun TANGSheng WANG . Synthesis, crystal structures, and properties of lanthanide metal-organic frameworks based on 2, 5-dibromoterephthalic acid ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1143-1150. doi: 10.11862/CJIC.20230271

    10. [10]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    11. [11]

      Mengzhen JIANGQian WANGJunfeng BAI . Research progress on low-cost ligand-based metal-organic frameworks for carbon dioxide capture from industrial flue gas. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 1-13. doi: 10.11862/CJIC.20240355

    12. [12]

      Yongzhi LIHan ZHANGGangding WANGYanwei SUILei HOUYaoyu WANG . A two-dimensional metal-organic framework for the determination of nitrofurantoin and nitrofurazone in aqueous solution. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 245-253. doi: 10.11862/CJIC.20240307

    13. [13]

      Guang Huang Lei Li Dingyi Zhang Xingze Wang Yugai Huang Wenhui Liang Zhifen Guo Wenmei Jiao . Cobalt’s Valor, Nickel’s Foe: A Comprehensive Chemical Experiment Utilizing a Cobalt-based Imidazolate Framework for Nickel Ion Removal. University Chemistry, 2024, 39(8): 174-183. doi: 10.3866/PKU.DXHX202311051

    14. [14]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    15. [15]

      Xiaogang Liu Mengyu Chen Yanyan Li Xiantao Ma . Experimental Reform in Applied Chemistry for Cultivating Innovative Competence: A Case Study of Catalytic Hydrogen Production from Liquid Formaldehyde Reforming at Room Temperature. University Chemistry, 2025, 40(7): 300-307. doi: 10.12461/PKU.DXHX202408007

    16. [16]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    17. [17]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    18. [18]

      Peng XUShasha WANGNannan CHENAo WANGDongmei YU . Preparation of three-layer magnetic composite Fe3O4@polyacrylic acid@ZiF-8 for efficient removal of malachite green in water. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 544-554. doi: 10.11862/CJIC.20230239

    19. [19]

      Zeyu XUAnlei DANGBihua DENGXiaoxin ZUOYu LUPing YANGWenzhu YIN . Evaluation of the efficacy of graphene oxide quantum dots as an ovalbumin delivery platform and adjuvant for immune enhancement. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1065-1078. doi: 10.11862/CJIC.20240099

    20. [20]

      Jing Wang Pingping Li Yuehui Wang Yifan Xiu Bingqian Zhang Shuwen Wang Hongtao Gao . Treatment and Discharge Evaluation of Phosphorus-Containing Wastewater. University Chemistry, 2024, 39(5): 52-62. doi: 10.3866/PKU.DXHX202309097

Metrics
  • PDF Downloads(126)
  • Abstract views(7769)
  • HTML views(2566)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return