Citation: DUAN Hui-wen, ZHANG Yong-qi, WANG Zhi-qing, LI Wei-wei, HUANG Jie-jie, ZHAO Jian-tao, FANG Yi-tian. Effects of potassium and CO atmosphere on properties of biomass chars from flash pyrolysis[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 789-797. shu

Effects of potassium and CO atmosphere on properties of biomass chars from flash pyrolysis

  • Corresponding author: ZHANG Yong-qi, zhangyq@sxicc.ac.cn
  • Received Date: 3 March 2017
    Revised Date: 13 April 2017

    Fund Project: the Research Supported by the CAS/SAFEA International Partnership Program for Creative Research Teams and Youth Innovation Promotion Association 2014156the National Natural Science Foundation of China 21676289

Figures(6)

  • Raw biomass and its de-potassium sample washed by water were pyrolyzed in a fixed bed reactor under pure N2 and CO-rich atmosphere at different temperatures. The obtained biomass chars were characterized by Fourier transform infrared spectroscopy (FT-IR), surface area analyzer, inductively coupled plasma emission spectroscopy and polarizing microscope. The yields of char, functional groups and other physicochemical structure were also studied and their evolution behaviors were examined. The results show that below 750 ℃, the BET surface areas and the amounts of alkyl and aliphatic functional groups in the chars derived from raw biomass are higher than those of de-potassium ones, but the char yields and the amounts of aromatic functional groups in the chars of raw biomass are lower than that of de-potassium samples. As to the effect of CO atmosphere, the yields of char and the amounts of all functional group in the chars derived from CO-rich atmosphere are less than that of N2 atmosphere, But the surface areas is higher than that of N2 atmosphere. Above 750 ℃, both potassium and CO can help to increase the char yields but decrease the amount of functional group and BET surface areas. In addition, the minerals are highly scattered and theirs amount on the surface of chars (raw biomass char, N2 atmosphere) is less when the pyrolysis temperature is lower than 750 ℃; while above 750 ℃, those are higher and the clusters of fusion mineral components increases with increasing pyrolysis temperature. As for the graphitization degree of biomass chars, it increases with increasing pyrolysis temperature but poor graphitization was obtained when the pyrolysis temperature is lower than 750 ℃. Moreover, CO can help to increase while K decreases the graphitization degree above 750 ℃.
  • 加载中
    1. [1]

      GUO Hai-xia, ZUO Ming-yue, ZHANG Hu. Progress in biomass energy utilization[J]. J Agric Mech Res, 2011,33(6):178-185.  

    2. [2]

      WAN Ren-xin. Biomass Energy Engineering[M]. Beijing:China Agriculture Press, 1995.

    3. [3]

      TAN Hong, WANG Shu-rong, LUO Zhong-yang, YU Chun-jiang, CEN Ke-fa. Influence of metallic salt on biomass flash pyrolysis characteristics[J]. J Eng Thermophys, 2005,26(5):742-744.  

    4. [4]

      GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, WANG Jian-fei, FANG Yi-tian, HUANG Jie-jie. Effect of CO on fast pyrolysis behaviors of lignite[J]. J Fuel Chem Technol, 2013,41(5):550-557.  

    5. [5]

      ZOLIN A, JENSEN A, JENSEN P A, FRANDSEN F, DAM-JOHANSEN K. The influence of inorganic materials on the thermal deactivation of fuel chars[J]. Energy Fuels, 2001,15(5):1110-1122. doi: 10.1021/ef000288d

    6. [6]

      MOURANT D, WANG Z, HE M, WANG X S, GARCIA-PEREZ M, LING K, LI C Z. Mallee wood fast pyrolysis:Effects of alkali and alkaline earth metallic species on the yield and composition of bio-oil[J]. Fuel, 2011,90(9):2915-2922. doi: 10.1016/j.fuel.2011.04.033

    7. [7]

      OKUNO T, SONOYAMA N, HAYASHI J I, LI C Z, SATHE C, CHIBA T. Primary release of alkali and alkaline earth metallic species during the pyrolysis of pulverized biomass[J]. Energy Fuels, 2005,19(5):2164-2171. doi: 10.1021/ef050002a

    8. [8]

      LIU H, FENG Y, WU S, LIU D. The role of ash particles in the bed agglomeration during the fluidized bed combustion of rice straw[J]. Bioresour Technol, 2009,100(24):6505-6513. doi: 10.1016/j.biortech.2009.06.098

    9. [9]

      WANG Xian-hua, CHEN Han-ping, WANG Jing, XIN Fen, YANG Hai-ping. Influence of mineral matters on biomass pyrolysis characteristic[J]. J Fuel Chem Technol, 2008,36(6):679-683.  

    10. [10]

      YANG Hai-ping, CHEN Han-ping, DU Sheng-lei, CHEN Ying-quan, WANG Xian-hua, ZHANG Shi-hong. Influence of alkali salts on the pyrolysis of biomass three components[J]. Proc CSEE, 2009,29(17):70-75.  

    11. [11]

      ZHANG Er-xia. Hydrogen pyrolysis performance and its char's microcosmic structure of doped Shengli lignite[D]. Inner Mongolia:Inner Mongolia University of Technology, 2016.

    12. [12]

      A. 2011-05-18. WU Dao-hong. Coal hydrogenation pyrolysis and gasification coupling method:CN, 102061182A[P]. 2011-05-18.

    13. [13]

      A. 2012-07-18. WANG Qin-hui, FANG Meng-xiang, LUO Zhong-yang, SHI Zheng-lun, CHENG Le-ming, YU Chun-jiang. Method of multi-production of gas-tar semi-coke steam based on fluidized bed pyrolysis technology:CN, 102585913A[P]. 2012-07-18.

    14. [14]

      ARRIVNAA A, LI Bao-ing, LI Wen, PUREVSUREN B, MUNKHJARGAL Sh, LIU Fen-rong, BAI Zong-qing, WANG Gang. Coal pyrolysis under synthesis gas, hydrogen and nitrogen[J]. J Fuel Chem Technol, 2007,35(1):1-4.  

    15. [15]

      LIAO Hong-qiang, LI Bao-qing, ZHANG Bi-jiang. Copyrolysis of coal with coke-oven gas[J]. J Fuel Chem Technol, 1998,26(1):13-17.  

    16. [16]

      BLANDER M. The inorganic chemistry of the combustion of aspen wood with added sulfur[J]. Biomass Bioenergy, 1997,12(4):289-293. doi: 10.1016/S0961-9534(96)00081-5

    17. [17]

      DAVIDSSON K O, KORSGREN J G, PETTERSSON J B C, JÄGLID U. The effects of fuel washing techniques on alkali release from biomass[J]. Fuel, 2002,81(2):137-142. doi: 10.1016/S0016-2361(01)00132-6

    18. [18]

      LIU Lei, ZHANG Xiang-long, LI Bo-lun, WANG Chang, HAO Qing-lan. Effect of pretreatment on the measurement of potassium content in plant biomass[J]. J Tianjin Univ Sci Technol, 2013,28(5):38-41.  

    19. [19]

      XIAO Jin, LI Fa-chuang, DENG Song-yun, ZHONG Qi-fan, LAI Yan-qing, LI Jie. Influence of demineralization on structure and pyrolysis characteristics of coal with acid-alkali method[J]. J Cent South Univ (Sci Technol), 2016,47(1):14-19. doi: 10.11817/j.issn.1672-7207.2016.01.003

    20. [20]

      RICHARDS G N, ZHENG G. Influence of metal ions and of salts on products from pyrolysis of wood:Applications to thermochemical processing of newsprint and biomass[J]. J Anal Appl Pyrolysis, 1991,21(1):133-146.  

    21. [21]

      KEILUWEIT M, NICO P S, JOHNSON M G, KLEBER M. Dynamic molecular structure of plant biomass-derived black carbon (biochar)[J]. Environ Sci Technol, 2010,44(4):1247-1253. doi: 10.1021/es9031419

    22. [22]

      BUSTIN R M, GUO Y. Abrupt changes (jumps) in reflectance values and chemical compositions of artificial charcoals and inertinite in coals[J]. In J Coal Geol, 1999,38(3):237-260.  

    23. [23]

      DAS D D, SCHNITZER M I, MONREAL C M, MAYER P. Chemical composition of acid-base fractions separated from biooil derived by fast pyrolysis of chicken manure[J]. Bioresour Technol, 2009,100(24):6524-6532. doi: 10.1016/j.biortech.2009.06.104

    24. [24]

      AHMAD M, LEE S S, DOU X, MOHAN D, SUNG J K, YANG J E, OK Y S. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water[J]. Bioresour Technol, 2012,118:536-544. doi: 10.1016/j.biortech.2012.05.042

    25. [25]

      GAO Song-ping, ZHAO Jian-tao, WANG Zhi-qing, WANG Jian-fei, FANG Yi-tian, HUANG Jie-jie. Effect of CO2 on pyrolysis behaviors of lignite[J]. J Fuel Chem Technol, 2013,41(3):257-264.  

    26. [26]

      FENG Jie, LI Wen-ying, XIE Ke-chang. Research on coal structure using FT-IR[J]. J China Univ Min Technol, 2002,31(5):362-366.  

    27. [27]

      ZHANG X, DONG L, ZHANG J, TIAN Y, XU G. Coal pyrolysis in a fluidized bed reactor simulating the process conditions of coal topping in CFB boiler[J]. J Anal Appl Pyrolysis, 2011,91(1):241-250. doi: 10.1016/j.jaap.2011.02.013

    28. [28]

      FU Peng, HU Song, XIANG Jun, SUN Lu-shi, ZHANG An-chao, YANG Tao, JIANG Long. Evolution of pore structure of biomass particles during pyrolysis[J]. J Chem Ind Eng, 2009,60(7):1793-1799.  

    29. [29]

      CETIN E, GUPTA R, MOGHTADERI B. Effect of pyrolysis pressure and heating rate on radiata pine char structure and apparent gasification reactivity[J]. Fuel, 2005,84(10):1328-1334. doi: 10.1016/j.fuel.2004.07.016

    30. [30]

      WU S, GU J, ZHANG X, WU Y, GAO J. Variation of carbon crystalline structures and CO2 gasification reactivity of Shenfu coal chars at elevated temperatures[J]. Energy Fuels, 2007,22(1):199-206.  

  • 加载中
    1. [1]

      Qingtang ZHANGXiaoyu WUZheng WANGXiaomei WANG . Performance of nano Li2FeSiO4/C cathode material co-doped by potassium and chlorine ions. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1689-1696. doi: 10.11862/CJIC.20240115

    2. [2]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    3. [3]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    6. [6]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    7. [7]

      Haiyu Zhu Zhuoqun Wen Wen Xiong Xingzhan Wei Zhi Wang . 二维半金属/硅异质结中肖特基势垒高度的准确高效预测. Acta Physico-Chimica Sinica, 2025, 41(7): 100078-. doi: 10.1016/j.actphy.2025.100078

    8. [8]

      Ping Song Nan Zhang Jie Wang Rui Yan Zhiqiang Wang Yingxue Jin . Experimental Teaching Design on Synthesis and Antitumor Activity Study of Cu-Pyropheophorbide-a Methyl Ester. University Chemistry, 2024, 39(6): 278-286. doi: 10.3866/PKU.DXHX202310087

    9. [9]

      Yuhang Jiang Weijie Liu Jiaqi Cai Jiayue Chen Yanping Ren Pingping Wu Liulin Yang . A Journey into the Science and Art of Sugar: “Dispersion of Light and Optical Rotation of Matter” Science Popularization Experiment. University Chemistry, 2024, 39(9): 288-294. doi: 10.12461/PKU.DXHX202401054

    10. [10]

      Qingyang Cui Feng Yu Zirun Wang Bangkun Jin Wanqun Hu Wan Li . From Jelly to Soft Matter: Preparation and Properties-Exploring of Different Kinds of Hydrogels. University Chemistry, 2024, 39(9): 338-348. doi: 10.3866/PKU.DXHX202309046

    11. [11]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    12. [12]

      Yahui HANJinjin ZHAONing RENJianjun ZHANG . Synthesis, crystal structure, thermal decomposition mechanism, and fluorescence properties of benzoic acid and 4-hydroxy-2, 2′: 6′, 2″-terpyridine lanthanide complexes. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 969-982. doi: 10.11862/CJIC.20240395

    13. [13]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    14. [14]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    15. [15]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    16. [16]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    17. [17]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    18. [18]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    19. [19]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    20. [20]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

Metrics
  • PDF Downloads(1)
  • Abstract views(562)
  • HTML views(62)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return