Citation: ZHANG Jin, LI Xiao-hua, DONG Liang-xiu, WANG Jia-jun, LIU Sha, CAI Yi-xi, SHAO Shan-shan, ZHANG Xiao-lei, HU Chao. Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 828-836. shu

Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites

  • Corresponding author: LI Xiao-hua, lixiaohua@ujs.edu.cn
  • Received Date: 23 February 2017
    Revised Date: 27 April 2017

    Fund Project: the National Natural Science Foundation of China 51276085the Priority Academic Program Development of Jiangsu Higher Education Institutions PDPA

Figures(10)

  • HZSM-5 zeolite was treated by sodium hydroxide solution, and then characterized by XRD, SEM, BET and Py-FTIR, respectively. Physical and chemical properties and composition analysis was applied to the organic phase of bio-oils. Thermogravimetric analysis was performed on three deactivated catalysts after using for 120 min and the peak area of char was calculated. The results show that the alkali-treated HZSM-5 catalyst retains typical MFI topology structure and forms a certain number of mesoporous. At the same time, the bio-oil organic phase made with modified HZSM-5 (after 1 h treatment) achieves a higher yield rate and better physical properties. The content of hydrocarbons increases significantly to 37.67% mainly with the increase of mononuclear aromatics. In addition, modified HZSM-5 catalyst (after 1 h treatment) has a better effect on the removal of acid, aldehyde and ketone contained in the bio-oil organic phase, which improves stability of the bio-oil with calorific value of 35.32 MJ/kg. The amount of coke in the HZSM-5 zeolite after 1 h alkali treatment obviously decreases.
  • 加载中
    1. [1]

      XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, CHEN Guan-yi. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Trans Chin Soc Agric Eng, 2013,29(1):196-201.  

    2. [2]

      ZHU Xi-feng. Research development of biomass fast pyrolysis[J]. J Circ Syst, 2013,1(1):32-37.  

    3. [3]

      El-BABARY M H, PHILIP H S, LEONARD I. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood[J]. Appl Biochem Biotechnol, 2009,154(1):3-13.  

    4. [4]

      NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014,197:252-261. doi: 10.1016/j.micromeso.2014.06.027

    5. [5]

      GUO Xiao-Ya, YAN Yong-jie. Study on catalytic cracking of bio-oil pyrolyzed from biomass[J]. Chem React Eng Technol, 2005,21(3):227-233.  

    6. [6]

      GROEN J C, ZHU W, BROUWER S, HUYNINK S, KAPTEIJN F, MOULIJN J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007,129(2):355-360. doi: 10.1021/ja065737o

    7. [7]

      PENG Peng, ZHANG Zhan-quan, WANG You-he, FAZLE S, YAN Zi-feng. Hierarchical molecular sieves:Synthesis and catalytic applications[J]. Prog Chem, 2013,25(12):2029-2037.  

    8. [8]

      SOHRAB F, MORTEZA S, CAVUS F. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J]. Fuel, 2014,116(2014):529-537.  

    9. [9]

      WEI Y, PETRA E, DAVID J L, MATTEO L M, GLENN J, KRIJN P. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation[J]. Appl Catal A:Gen, 2015,504:211-219. doi: 10.1016/j.apcata.2014.12.027

    10. [10]

      FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, YU Ning, YIN Hai-yun. Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J]. Trans Chin Soc Agric Mach, 2014,45(12):234-240. doi: 10.6041/j.issn.1000-1298.2014.12.035

    11. [11]

      FAN Y S, CAI Y X, LI X H, YIN H Y, YU N. R ape straw as a source of bio-oil via vacuum pyrolysis:Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil[J]. J Anal Appl Pyrolysis, 2014,106(3):63-70.  

    12. [12]

      FU T, ZHOU H, LI Z. Effect of particle morphology for ZSM-5 zeolite on the catalytic conversion of methanol to gasoline-range hydrocarbons[J]. Catal Lett, 2016,146(10):1973-1983. doi: 10.1007/s10562-016-1841-3

    13. [13]

      YANG Ya, GUO Qing-jie, YANG Lin, ZHANG Liang, WANG Xu-yun, ZHANG Xiu-li. Catalytic cracking of chlorella over HZSM-5 zeolite modified by desilication in alkalille medium[J]. Acta Energ Sin, 2016,37(1):171-177.  

    14. [14]

      XU Qing-li, ZHAO Jun, LI Hong-yu, WANG Fu, YAN Yong-jie. Catalytic cracking of bio-oil upgrading mechanism[J]. J Shenyang Univ, 2012,24(2):15-17.  

    15. [15]

      AHO A, KUMAR N, LASHKUL A V, ERANEN K, ZIOLEK M, DECYK P, SALMI T, HOLMBOM B. Catalytic upgrading of woody biomass derived pyrolysis vapors over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010,89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009

    16. [16]

      ZHANG L H, XU C B, PASCALE C. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energ Convers Manage, 2010,251(5):969-982.  

    17. [17]

      GUO Chun-Lei, FANG Xiang-chen, JIA Li-ming, LIU Quan-jie, ZHAO Xiao-dong. Development of zeolitic reforming catalyst[J]. Prog Chem, 2012,31(4):825-832.  

    18. [18]

      WANG J, GRONE J C. Facile synthesis of ZSM-5 composites with hierarchical poposity[J]. J Mater Chem, 2008,18(4):468-478. doi: 10.1039/B711847C

    19. [19]

      FAN Yong-sheng. Basic study on vacuum pyrolysis and catalytic transformation of biomass for preparation of bio-oil[D]. Jiangsu:Jiangsu University, 2016.

    20. [20]

      KUZNETSOV B N. Deactivation of catalysts for fossil coal and biomass conversion[J]. Catal Ind, 2009,1(3):250-259. doi: 10.1134/S2070050409030143

    21. [21]

      BEATRIZ V, CASTA O P, OLAZAR M, BILBAO J, GAYUBO A G. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. J Catal, 2012,285(1):304-314. doi: 10.1016/j.jcat.2011.10.004

    22. [22]

      SEO G, KIM J H, JANG H G. Methanol-to-olefin conversion over zeolite catalysts:Active intermediates and deactivation[J]. Catal Surv Asia, 2013,17(3):103-118.  

    23. [23]

      DANOV S M, ESIPOVICH A L, BELOUSOV A S, ROGOZHIN A E. Deactivation of acid catalysts in vapor-phase dehydration of glycerol into acrolein[J]. Russ J Appl Chem, 2014,87(4):461-467. doi: 10.1134/S10704272140400119

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    3. [3]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    4. [4]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    5. [5]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    6. [6]

      Guoze Yan Bin Zuo Shaoqing Liu Tao Wang Ruoyu Wang Jinyang Bao Zhongzhou Zhao Feifei Chu Zhengtong Li Yusuke Yamauchi Saad Melhi Xingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 100032-. doi: 10.3866/PKU.WHXB202404006

    7. [7]

      Zeqiu Chen Limiao Cai Jie Guan Zhanyang Li Hao Wang Yaoguang Guo Xingtao Xu Likun Pan . 电容去离子提锂技术中电极材料的研究进展. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-. doi: 10.1016/j.actphy.2025.100089

    8. [8]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    9. [9]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    10. [10]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    11. [11]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    12. [12]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    13. [13]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

    14. [14]

      Zhibei Qu Changxin Wang Lei Li Jiaze Li Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039

    15. [15]

      Yang Liu Peng Chen Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085

    16. [16]

      Tianyu Feng Guifang Jia Peng Zou Jun Huang Zhanxia Lü Zhen Gao Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002

    17. [17]

      Jinghan ZHANGGuanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249

    18. [18]

      Lina Feng Guoyu Jiang Xiaoxia Jian Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171

    19. [19]

      Siran Wang Yinuo Wang Yilong Zhao Dazhen Xu . Advances in the Application and Preparation of Rhodanine and Its Derivatives. University Chemistry, 2025, 40(5): 318-327. doi: 10.12461/PKU.DXHX202407033

    20. [20]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

Metrics
  • PDF Downloads(1)
  • Abstract views(986)
  • HTML views(157)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return