Citation: ZHANG Jin, LI Xiao-hua, DONG Liang-xiu, WANG Jia-jun, LIU Sha, CAI Yi-xi, SHAO Shan-shan, ZHANG Xiao-lei, HU Chao. Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(7): 828-836. shu

Online upgrading of bio-oil with alkali-treated HZSM-5 zeolites

  • Corresponding author: LI Xiao-hua, lixiaohua@ujs.edu.cn
  • Received Date: 23 February 2017
    Revised Date: 27 April 2017

    Fund Project: the National Natural Science Foundation of China 51276085the Priority Academic Program Development of Jiangsu Higher Education Institutions PDPA

Figures(10)

  • HZSM-5 zeolite was treated by sodium hydroxide solution, and then characterized by XRD, SEM, BET and Py-FTIR, respectively. Physical and chemical properties and composition analysis was applied to the organic phase of bio-oils. Thermogravimetric analysis was performed on three deactivated catalysts after using for 120 min and the peak area of char was calculated. The results show that the alkali-treated HZSM-5 catalyst retains typical MFI topology structure and forms a certain number of mesoporous. At the same time, the bio-oil organic phase made with modified HZSM-5 (after 1 h treatment) achieves a higher yield rate and better physical properties. The content of hydrocarbons increases significantly to 37.67% mainly with the increase of mononuclear aromatics. In addition, modified HZSM-5 catalyst (after 1 h treatment) has a better effect on the removal of acid, aldehyde and ketone contained in the bio-oil organic phase, which improves stability of the bio-oil with calorific value of 35.32 MJ/kg. The amount of coke in the HZSM-5 zeolite after 1 h alkali treatment obviously decreases.
  • 加载中
    1. [1]

      XU Ying, WANG Tie-jun, MA Long-long, ZHANG Qi, CHEN Guan-yi. Technology of bio-oil preparation by vacuum pyrolysis of pine straw[J]. Trans Chin Soc Agric Eng, 2013,29(1):196-201.  

    2. [2]

      ZHU Xi-feng. Research development of biomass fast pyrolysis[J]. J Circ Syst, 2013,1(1):32-37.  

    3. [3]

      El-BABARY M H, PHILIP H S, LEONARD I. Characterization of fast pyrolysis bio-oils produced from pretreated pine wood[J]. Appl Biochem Biotechnol, 2009,154(1):3-13.  

    4. [4]

      NIU X J, GAO J, MIAO Q, DONG M, WANG G F, FAN W B, QIN Z F, WANG J G. Influence of preparation method on the performance of Zn-containing HZSM-5 catalysts in methanol-to-aromatics[J]. Microporous Mesoporous Mater, 2014,197:252-261. doi: 10.1016/j.micromeso.2014.06.027

    5. [5]

      GUO Xiao-Ya, YAN Yong-jie. Study on catalytic cracking of bio-oil pyrolyzed from biomass[J]. Chem React Eng Technol, 2005,21(3):227-233.  

    6. [6]

      GROEN J C, ZHU W, BROUWER S, HUYNINK S, KAPTEIJN F, MOULIJN J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007,129(2):355-360. doi: 10.1021/ja065737o

    7. [7]

      PENG Peng, ZHANG Zhan-quan, WANG You-he, FAZLE S, YAN Zi-feng. Hierarchical molecular sieves:Synthesis and catalytic applications[J]. Prog Chem, 2013,25(12):2029-2037.  

    8. [8]

      SOHRAB F, MORTEZA S, CAVUS F. Improvement of HZSM-5 performance by alkaline treatments:Comparative catalytic study in the MTG reactions[J]. Fuel, 2014,116(2014):529-537.  

    9. [9]

      WEI Y, PETRA E, DAVID J L, MATTEO L M, GLENN J, KRIJN P. Enhanced catalytic performance of zeolite ZSM-5 for conversion of methanol to dimethyl ether by combining alkaline treatment and partial activation[J]. Appl Catal A:Gen, 2015,504:211-219. doi: 10.1016/j.apcata.2014.12.027

    10. [10]

      FAN Yong-sheng, CAI Yi-xi, LI Xiao-hua, YU Ning, YIN Hai-yun. Catalytic upgrading of pyrolytic vapors from rape straw vacuum pyrolysis[J]. Trans Chin Soc Agric Mach, 2014,45(12):234-240. doi: 10.6041/j.issn.1000-1298.2014.12.035

    11. [11]

      FAN Y S, CAI Y X, LI X H, YIN H Y, YU N. R ape straw as a source of bio-oil via vacuum pyrolysis:Optimization of bio-oil yield using orthogonal design method and characterization of bio-oil[J]. J Anal Appl Pyrolysis, 2014,106(3):63-70.  

    12. [12]

      FU T, ZHOU H, LI Z. Effect of particle morphology for ZSM-5 zeolite on the catalytic conversion of methanol to gasoline-range hydrocarbons[J]. Catal Lett, 2016,146(10):1973-1983. doi: 10.1007/s10562-016-1841-3

    13. [13]

      YANG Ya, GUO Qing-jie, YANG Lin, ZHANG Liang, WANG Xu-yun, ZHANG Xiu-li. Catalytic cracking of chlorella over HZSM-5 zeolite modified by desilication in alkalille medium[J]. Acta Energ Sin, 2016,37(1):171-177.  

    14. [14]

      XU Qing-li, ZHAO Jun, LI Hong-yu, WANG Fu, YAN Yong-jie. Catalytic cracking of bio-oil upgrading mechanism[J]. J Shenyang Univ, 2012,24(2):15-17.  

    15. [15]

      AHO A, KUMAR N, LASHKUL A V, ERANEN K, ZIOLEK M, DECYK P, SALMI T, HOLMBOM B. Catalytic upgrading of woody biomass derived pyrolysis vapors over iron modified zeolites in a dual-fluidized bed reactor[J]. Fuel, 2010,89(8):1992-2000. doi: 10.1016/j.fuel.2010.02.009

    16. [16]

      ZHANG L H, XU C B, PASCALE C. Overview of recent advances in thermo-chemical conversion of biomass[J]. Energ Convers Manage, 2010,251(5):969-982.  

    17. [17]

      GUO Chun-Lei, FANG Xiang-chen, JIA Li-ming, LIU Quan-jie, ZHAO Xiao-dong. Development of zeolitic reforming catalyst[J]. Prog Chem, 2012,31(4):825-832.  

    18. [18]

      WANG J, GRONE J C. Facile synthesis of ZSM-5 composites with hierarchical poposity[J]. J Mater Chem, 2008,18(4):468-478. doi: 10.1039/B711847C

    19. [19]

      FAN Yong-sheng. Basic study on vacuum pyrolysis and catalytic transformation of biomass for preparation of bio-oil[D]. Jiangsu:Jiangsu University, 2016.

    20. [20]

      KUZNETSOV B N. Deactivation of catalysts for fossil coal and biomass conversion[J]. Catal Ind, 2009,1(3):250-259. doi: 10.1134/S2070050409030143

    21. [21]

      BEATRIZ V, CASTA O P, OLAZAR M, BILBAO J, GAYUBO A G. Deactivating species in the transformation of crude bio-oil with methanol into hydrocarbons on a HZSM-5 catalyst[J]. J Catal, 2012,285(1):304-314. doi: 10.1016/j.jcat.2011.10.004

    22. [22]

      SEO G, KIM J H, JANG H G. Methanol-to-olefin conversion over zeolite catalysts:Active intermediates and deactivation[J]. Catal Surv Asia, 2013,17(3):103-118.  

    23. [23]

      DANOV S M, ESIPOVICH A L, BELOUSOV A S, ROGOZHIN A E. Deactivation of acid catalysts in vapor-phase dehydration of glycerol into acrolein[J]. Russ J Appl Chem, 2014,87(4):461-467. doi: 10.1134/S10704272140400119

  • 加载中
    1. [1]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    2. [2]

      Jia-He Li Yu-Ze Liu Jia-Hui Ma Qing-Xiao Tong Jian-Ji Zhong Jing-Xin Jian . 洛芬碱衍生物的合成、化学发光与重金属离子检测. University Chemistry, 2025, 40(6): 230-237. doi: 10.12461/PKU.DXHX202407080

    3. [3]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    4. [4]

      Zhaoxin LIRuibo WEIMin ZHANGZefeng WANGJing ZHENGJianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235

    5. [5]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    6. [6]

      Jinlong YANWeina WUYuan WANG . A simple Schiff base probe for the fluorescent turn-on detection of hypochlorite and its biological imaging application. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1653-1660. doi: 10.11862/CJIC.20240154

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Lu ZhuoranLi ShengkaiLu YuxuanWang ShuangyinZou Yuqin . Cleavage of C―C Bonds for Biomass Upgrading on Transition Metal Electrocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2306003-0. doi: 10.3866/PKU.WHXB202306003

    9. [9]

      Yue ZhangBao LiLixin Wu . GO-Assisted Supramolecular Framework Membrane for High-Performance Separation of Nanosized Oil-in-Water Emulsions. Acta Physico-Chimica Sinica, 2024, 40(5): 2305038-0. doi: 10.3866/PKU.WHXB202305038

    10. [10]

      Xinlong XUChunxue JINGYuzhen CHEN . Bimetallic MOF-74 and derivatives: Fabrication and efficient electrocatalytic biomass conversion. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1545-1554. doi: 10.11862/CJIC.20250046

    11. [11]

      Guoze YanBin ZuoShaoqing LiuTao WangRuoyu WangJinyang BaoZhongzhou ZhaoFeifei ChuZhengtong LiYamauchi YusukeMelhi SaadXingtao Xu . Opportunities and Challenges of Capacitive Deionization for Uranium Extraction from Seawater. Acta Physico-Chimica Sinica, 2025, 41(4): 2404006-0. doi: 10.3866/PKU.WHXB202404006

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Zeqiu ChenLimiao CaiJie GuanZhanyang LiHao WangYaoguang GuoXingtao XuLikun Pan . Advanced electrode materials in capacitive deionization for efficient lithium extraction. Acta Physico-Chimica Sinica, 2025, 41(8): 100089-0. doi: 10.1016/j.actphy.2025.100089

    14. [14]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    15. [15]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    16. [16]

      Xingyang LITianju LIUYang GAODandan ZHANGYong ZHOUMeng PAN . A superior methanol-to-propylene catalyst: Construction via synergistic regulation of pore structure and acidic property of high-silica ZSM-5 zeolite. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1279-1289. doi: 10.11862/CJIC.20240026

    17. [17]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(1)
  • Abstract views(1057)
  • HTML views(172)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return