Citation: YANG Gai-xiu, WANG Ke-xin, ZHANG Ze-zhen, ZHEN Feng, SUN Yong-ming. Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(7): 889-896. shu

Preparation of MnO2 catalyst by electrochemical deposition and its application in the microbial fuel cells

  • Corresponding author: SUN Yong-ming, sunym@ms.giec.ac.cn
  • Received Date: 31 March 2020
    Revised Date: 3 June 2020

    Fund Project: the Natural Science Foundation of Guangdong Province 2017A030310280the Strategic Priority Research Program of Chinese Academy of Sciences XDA 21050400National Natural Science Foundation of China 51806224the Natural Science Foundation of Guangdong Province 2019A1515011971The project was supported by the Natural Science Foundation of Guangdong Province (2017A030310280, 2019A1515011971), National Natural Science Foundation of China (51806224) and the Strategic Priority Research Program of Chinese Academy of Sciences (XDA 21050400)

Figures(8)

  • As a green and clean renewable energy technology, microbial fuel cells (MFCs) have attracted extensive attention. The electrocatalysts with high activity and low-cost towards oxygen reduction reaction (ORR) are of great importance for the large-scale commercial applications of MFCs. Among multifarious cathode catalysts, manganese-based oxides showed high catalytic activity close to that of the precious metals. In this work, a sponge-like manganese dioxide (MnO2) electro-catalyst was successfully prepared by the electrodeposition method. The surface morphology and composition of as-prepared MnO2 catalyst were characterized by means of scanning electron microscopy (SEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and so on; the electrocatalytic activity of the obtained MnO2 material towards ORR were evaluated by the linear sweep voltammetry (LSV) in a neutral phosphate buffer solution. The results demonstrate that the as-prepared MnO2 catalyst appears as crystalline γ-MnO2 and has a high Mn3+/Mn4+ ratio, which is beneficial to improving the catalytic activity in ORR. The as prepared γ-MnO2 catalyst exhibits superior activity for the ORR under neutral conditions to the commercial MnO2 catalyst. An MFC coupled with as-prepared catalyst generates an open circuit voltage of 0.52 V, with a maximum power density of 975.6 mW/m2, about 1.7 times of that achieved with the MFC using commercial MnO2 as cathode catalyst, which suggests that the MnO2 catalyst prepared by the electrodeposition could be an economical alternative for Pt free catalysts in practical application of MFC.
  • 加载中
    1. [1]

      SLATE A J, WHITEHEAD K A, BROWNSON D A C, BANKS C E. Microbial fuel cells:An overview of current technology[J]. Renewable Sustainable. Energy Rev, 2019,101:60-81. doi: 10.1016/j.rser.2018.09.044

    2. [2]

      CAI T, HUANG Y, HUANG M, XI Y, PANG D, ZHANG W. Enhancing oxygen reduction reaction of supercapacitor microbial fuel cells with electrospun carbon nanofibers composite cathode[J]. Chem Eng J, 2019,371:544-553. doi: 10.1016/j.cej.2019.04.025

    3. [3]

      GUO D, TIAN Z, WANG J, KE X, ZHU Y. Co2N nanoparticles embedded N-doped mesoporous carbon as efficient electrocatalysts for oxygen reduction reaction[J]. Appl Surf Sci, 2019,473:555-563. doi: 10.1016/j.apsusc.2018.12.204

    4. [4]

      GUO Y Y, YUAN P F, ZHANG J N, HU Y F, AMIINU I S, WANG X, ZHOU J G, XIA H C, SONG Z B, XU Q, MU S C. Carbon nanosheets containing discrete Co-Nx-By-C active sites for efficient oxygen electrocatalysis and rechargeable Zn-Air Batteries[J]. ACS Nano, 2018,12(2):1894-1901. doi: 10.1021/acsnano.7b08721

    5. [5]

      ZHUANG Lin. P, N-doped carbon as an efficient anti-poisoning catalyst against SOx, NOx and POx during oxygen reduction in acidic media[J]. Acta Phys-Chim Sin, 2019,35(7):659-660.

    6. [6]

      JING B, YOU S, MA Y, XING Z, CHEN H, DAI Y, ZHANG C, REN N, ZOU J. Fe3Se4/FeSe heterojunctions in cornstalk-derived N-doped carbon framework enhance charge transfer and cathodic oxygen reduction reaction to boost bio-electricity generation[J]. Appl Catal B:Environ, 2019,244:465-474. doi: 10.1016/j.apcatb.2018.11.074

    7. [7]

      LIU D, WU C, CHEN S, DING S, XIE Y, WANG C, WANG T, HALEEM Y A, REHMAN Z U, SANG Y, LIU Q, ZHENG X, WANG Y, GE B, XU H, SONG L. In situ trapped high-density single metal atoms within graphene:Iron-containing hybrids as representatives for efficient oxygen reduction[J]. Nano Res, 2018,11(4):2217-2228.  

    8. [8]

      BURKITT R, WHIFFEN T R, YU E H. Iron phthalocyanine and MnOx composite catalysts for microbial fuel cell applications[J]. Appl Catal B:Environ, 2016,181:279-288. doi: 10.1016/j.apcatb.2015.07.010

    9. [9]

      WANG Jun, WEI Zi-Dong. Recent progress in non-precious metal catalysts for oxygen reduction reaction[J]. Acta Phys-Chim Sin, 2017,33(5):886-902.  

    10. [10]

      LU X, ZHAI T, ZHANG X, SHEN Y, YUAN L, HU B, GONG L, CHEN J, GAO Y, ZHOU J. WO3-x@Au@MnO2 core-shell nanowires on carbon fabric for high-performance flexible supercapacitors[J]. Adv Mater, 2012,24(7):938-944. doi: 10.1002/adma.201104113

    11. [11]

      GORLIN Y, CHUNG C-J, NORDLUND D, CLEMENS B M, JARAMILLO T F. Mn3O4 supported on glassy carbon:An active non-precious metal catalyst for the oxygen reduction reaction[J]. ACS Catal, 2012,2(12):2687-2694. doi: 10.1021/cs3004352

    12. [12]

      CHENG F, SHEN J, PENG B, PAN Y, TAO Z, CHEN J. Rapid room-temperature synthesis of nanocrystalline spinels as oxygen reduction and evolution electrocatalysts[J]. Nat Chem, 2011,3(1):79-84. doi: 10.1038/nchem.931

    13. [13]

      YU S, LIU R, YANG W, HAN K, WANG Z, ZHU H. Synthesis and electrocatalytic performance of MnO2-promoted Ag@Pt/MWCNT electrocatalysts for oxygen reduction reaction[J]. J Mater Chem:A, 2014,2(15):5371-5378. doi: 10.1039/C3TA14564F

    14. [14]

      LIU X W, SUN X F, HUANG Y X, SHENG G P, ZHOU K, ZENG R J, DONG F, WANG S G, XU A W, TONG Z H, YU H Q. Nano-structured manganese oxide as a cathodic catalyst for enhanced oxygen reduction in a microbial fuel cell fed with a synthetic wastewater[J]. Water Res, 2010,44(18):5298-5305. doi: 10.1016/j.watres.2010.06.065

    15. [15]

      MENG Y, SONG W, HUANG H, REN Z, CHEN S-Y, SUIB S L. Structure-property relationship of bifunctional MnO2 nanostructures:highly efficient, ultra-stable electrochemical water oxidation and oxygen reduction reaction catalysts identified in alkaline media[J]. J Am Chem Soc, 2014,136(32):11452-11464. doi: 10.1021/ja505186m

    16. [16]

      CLAUWAERT P, VAN DER HA D, BOON N, VERBEKEN K, VERHAEGE M, RABAEY K, VERSTRAETE W. Open air biocathode enables effective electricity generation with microbial fuel cells[J]. Environ Sci Technol, 2007,41(21):7564-7569. doi: 10.1021/es0709831

    17. [17]

      MAJIDI M R, FARAHANI F S, HOSSEINI M, AHADZADEH I. Low-cost nanowired alpha-MnO2/C as an ORR catalyst in air-cathode microbial fuel cell[J]. Bioelectrochem, 2019,125:38-45. doi: 10.1016/j.bioelechem.2018.09.004

    18. [18]

      KUMAR G G, AWAN Z, NAHM K S, XAVIER J S. Nanotubular MnO2/graphene oxide composites for the application of open air-breathing cathode microbial fuel cells[J]. Biosens Bioelectron, 2014,53:528-534. doi: 10.1016/j.bios.2013.10.012

    19. [19]

      LU Na, ZHOU Ben, DENG Li-fang, ZHOU Shun-gui. Starch processing wastewater treatment using a continuous microbial fuel cell with MnO2 cathodic catalyst[J]. J Basic Sci Eng, 2009,17(Supplement):62-73.  

    20. [20]

      ZHANG L, LIU C, ZHUANG L, LI W, ZHOU S, ZHANG J. Manganese dioxide as an alternative cathodic catalyst to platinum in microbial fuel cells[J]. Biosens Bioelectron, 2009,24(9):2825-2829. doi: 10.1016/j.bios.2009.02.010

    21. [21]

      LU M, KHARKWAL S, NG H Y, LI S F Y. Carbon nanotube supported MnO2 catalysts for oxygen reduction reaction and their applications in microbial fuel cells[J]. Biosens Bioelectron, 2011,26(12):4728-4732. doi: 10.1016/j.bios.2011.05.036

    22. [22]

      ROCHE I, CHAINET E, CHATENET M, VONDRAK J. Carbon-supported manganese oxide nanoparticles as electrocatalysts for the Oxygen Reduction Reaction (ORR) in alkaline medium:Physical characterizations and ORR mechanism[J]. J Phys Chem C, 2007,111(3):1434-1443.  

    23. [23]

      GAO F, TANG X, YI H, CHU C, LI N, LI J, ZHAO S. In-situ DRIFTS for the mechanistic studies of NO oxidation over alpha-MnO2, beta-MnO2 and gamma-MnO2 catalysts[J]. Chem Eng J, 2017,322:525-537. doi: 10.1016/j.cej.2017.04.006

    24. [24]

      PENG R, ZHENG Y, GUI L, ZHU Y, YU P, LUO Y. Template free synthesize mesoporous manganese dioxides for nater treatment[J]. J Alloys Compd, 2018,753:130-137. doi: 10.1016/j.jallcom.2018.04.144

    25. [25]

      JU J, ZHAO H, KANG W, TIAN N, DENG N, CHENG B. Designing MnO2 & carbon composite porous nanofiber structure for supercapacitor applications[J]. Electrochim Acta, 2017,258:116-123. doi: 10.1016/j.electacta.2017.10.094

    26. [26]

      YANG H, ZHANG C, MENG Q, CAO B, TIAN G. Pre-lithiated manganous oxide/graphene aerogel composites as anode materials for high energy density lithium ion capacitors[J]. J Power Sources, 2019,431:114-124. doi: 10.1016/j.jpowsour.2019.05.060

    27. [27]

      ZHANG P, LI K, LIU X. Carnation-like MnO2 modified activated carbon air cathode improve power generation in microbial fuel cells[J]. J Power Sources, 2014,264:248-253. doi: 10.1016/j.jpowsour.2014.04.098

    28. [28]

      Mo Guang-quan.Application of functinalized carbon nanotube materials in microbial fuel cell[D]. Guangzhou: South China University of Technology, 2010. 

    29. [29]

      LIU Y, LIU Z-M. Promoted activity of nitrogen-doped activated carbon as a highly efficient oxygen reduction catalyst in microbial fuel cells[J]. J Appl Electrochem, 2019,49(2):119-133. doi: 10.1007/s10800-018-1263-6

    30. [30]

      YANG G, CHEN D, LV P, KONG X, SUN Y, WANG Z, YUAN Z, LIU H, YANG J. Core-shell Au-Pd nanoparticles as cathode catalysts for microbial fuel cell applications[J]. Sci Rep-UK, 2016,635252. doi: 10.1038/srep35252

    31. [31]

      LIU Y, FAN Y S, LIU Z M. Pyrolysis of iron phthalocyanine on activated carbon as highly efficient non-noble metal oxygen reduction catalyst in microbial fuel cells[J]. Chem Eng J, 2019,361:416-427. doi: 10.1016/j.cej.2018.12.105

    32. [32]

      QIAN Fan. MnO2 Prepared by electrochemical deposition for supercapacitor applications[D]. Dalian: Dalian University of Technology, 2018. 

    33. [33]

      YAN L, SHEN C, NIU L, LIU M-C, LIN J, CHEN T, GONG Y, LI C, LIU X, XU S. Experimental and theoretical investigation of the effect of oxygen vacancies on the electronic structure and pseudocapacitance of MnO2[J]. ChemSusChem, 2019,1215.  

    34. [34]

      STOERZINGER K A, RISCH M, HAN B, SHAO-HORN Y. Recent insights into manganese oxides in catalyzing oxygen reduction kinetics[J]. ACS Catal, 2015,5(10):6021-6031. doi: 10.1021/acscatal.5b01444

    35. [35]

      SELVAKUMAR K, KUMAR S M S, THANGAMUTHU R, RAJPUT P, BHATTACHARYYA D, JHA S N. 2D and 3D silica-template-derived MnO2 electrocatalysts towards enhanced oxygen evolution and oxygen reduction activity[J]. ChemElectroChem, 2018,5(24):3980-3990. doi: 10.1002/celc.201801143

    36. [36]

      CHEN Su-yi. Synthesis of Transition Metals dopedManganese Dioxides and the oxygen reduction activities[D]. Guangzhou: Guangdong university of technology, 2015. 

    37. [37]

      SHAO M, CHANG Q, DODELET J-P, CHENITZ R. Recent advances in electrocatalysts for oxygen reduction reaction[J]. Chem Rev, 2016,3594.  

  • 加载中
    1. [1]

      Qinjin DAIShan FANPengyang FANXiaoying ZHENGWei DONGMengxue WANGYong ZHANG . Performance of oxygen vacancy-rich V-doped MnO2 for high-performance aqueous zinc ion battery. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 453-460. doi: 10.11862/CJIC.20240326

    2. [2]

      Xichen YAOShuxian WANGYun WANGCheng WANGChuang ZHANG . Oxygen reduction performance of self?supported Fe/N/C three-dimensional aerogel catalyst layers. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1387-1396. doi: 10.11862/CJIC.20240384

    3. [3]

      Hailang JIAHongcheng LIPengcheng JIYang TENGMingyun GUAN . Preparation and performance of N-doped carbon nanotubes composite Co3O4 as oxygen reduction reaction electrocatalysts. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 693-700. doi: 10.11862/CJIC.20230402

    4. [4]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    5. [5]

      Huirong BAOJun YANGXiaomiao FENG . Preparation and electrochemical properties of NiCoP/polypyrrole/carbon cloth by electrodeposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1083-1093. doi: 10.11862/CJIC.20250008

    6. [6]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    7. [7]

      Haoting WangMengfan LuoYuzhong WangJialong YinHeng ZhangJia ZhaoBo Lai . Mn(Ⅱ) enhanced permanganate oxidation of trace organic pollutants in water: Critical role of in situ formation of colloidal MnO2. Chinese Chemical Letters, 2025, 36(6): 110348-. doi: 10.1016/j.cclet.2024.110348

    8. [8]

      Xudong LvTao ShaoJunyan LiuMeng YeShengwei Liu . Paired Electrochemical CO2 Reduction and HCHO Oxidation for the Cost-Effective Production of Value-Added Chemicals. Acta Physico-Chimica Sinica, 2024, 40(5): 2305028-0. doi: 10.3866/PKU.WHXB202305028

    9. [9]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    10. [10]

      Xiaofeng ZhuBingbing XiaoJiaxin SuShuai WangQingran ZhangJun Wang . Transition Metal Oxides/Chalcogenides for Electrochemical Oxygen Reduction into Hydrogen Peroxides. Acta Physico-Chimica Sinica, 2024, 40(12): 2407005-0. doi: 10.3866/PKU.WHXB202407005

    11. [11]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    12. [12]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    13. [13]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    14. [14]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    15. [15]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    16. [16]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    17. [17]

      Dong XiangKunzhen LiKanghua MiaoRan LongYujie XiongXiongwu Kang . Amine-Functionalized Copper Catalysts: Hydrogen Bonding Mediated Electrochemical CO2 Reduction to C2 Products and Superior Rechargeable Zn-CO2 Battery Performance. Acta Physico-Chimica Sinica, 2024, 40(8): 2308027-0. doi: 10.3866/PKU.WHXB202308027

    18. [18]

      Yulian Hu Xin Zhou Xiaojun Han . A Virtual Simulation Experiment on the Design and Property Analysis of CO2 Reduction Photocatalyst. University Chemistry, 2025, 40(3): 30-35. doi: 10.12461/PKU.DXHX202403088

    19. [19]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    20. [20]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

Metrics
  • PDF Downloads(27)
  • Abstract views(1816)
  • HTML views(390)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return