Citation: LI Ming-jie, GAO Xiu-juan, YANG Qi, FENG Ru, ZHANG Jun-feng, SONG Fa-en, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Effect of Ce doping on the performance of MoSn catalyst in the selective oxidation of dimethyl ether to methyl formate[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(10): 1248-1255. shu

Effect of Ce doping on the performance of MoSn catalyst in the selective oxidation of dimethyl ether to methyl formate

  • Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
  • Received Date: 30 July 2020
    Revised Date: 8 September 2020

    Fund Project: The project was supported by the National Natural Science Foundation of China (21773283, 21373253), CAS Interdisciplinary Innovation Team (BK2018001), the Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, CAS (DNL 201903), the Youth Innovation Promotion Association CAS (2014155) and the Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University (201624)The Dalian National Laboratory For Clean Energy (DNL) Cooperation Fund, CAS DNL 201903The National Natural Science Foundation of China 21373253The National Natural Science Foundation of China 21773283The Open Project Program of State Key Laboratory of Physical Chemistry of Solid Surfaces, Xiamen University 201624The Youth Innovation Promotion Association CAS 2014155CAS Interdisciplinary Innovation Team BK2018001

Figures(6)

  • A series of MoSn catalysts doped with different Ce loadings were prepared by hydrothermal method and their catalytic performance in the selective oxidation of dimethyl ether (DME) to methyl formate (MF) was investigated. The results indicate that the introduction of 0.5% Ce can significantly improve the activity of the MoSn catalyst over the 0.5%Ce-MoSn catalyst, the conversion of DME reaches 11.8% at 130 ℃, with a selectivity of 92.2% for MF. The MoSn catalysts were characterized by nitrogen sorption, XRD, NH3-TPD, CO2-TPD, H2-TPR, XPS and in situ-IR; the results illustrate that a small amount of Ce in the MoSn catalyst can obviously increase the quantity of Mo5+, though it has little effect on the structure of the MoSn catalyst.
  • 加载中
    1. [1]

      WANG D S, HAN Y Z, TAN Y S, TSUBAKI N. Effect of H2O on Cu-based catalyst in one-step slurry phase dimethyl ether synthesis[J]. Fuel Process Technol, 2009,90(3):446-451. doi: 10.1016/j.fuproc.2008.11.007

    2. [2]

      SUN Ming, YU Lin, SUN Chang-yong, SONG Yi-bing, SUN Jian. Application of dimethyl ether and development of its downstream products[J]. Fine Chem, 2003,20(11):695-699.  

    3. [3]

      HUANG Xiu-min, XU yi-de, SHEN Wen-jie. Selective oxidation of dimethyl ether to formaldehyde over supported MoOx and VOx catalysts[J]. Chin J Catal, 2004,25(4):267-271.  

    4. [4]

      HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic study of selective oxidation of dimethyl ether to formaldehyde over Alumina-supported molybdenum oxide catalyst[J]. Catal Lett, 2006,108(1/2):79-86.  

    5. [5]

      LIU H C, CHEUNG P, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003,217(1):222-232.  

    6. [6]

      LIU H C, IGLESIA E. Selective oxidation of dimethyl ether to formaldehyde on small molybdenum oxide domains[J]. J Catal, 2002,208(1):1-5.  

    7. [7]

      WANG Duo-ren. Production development and application prospects of methyl formate[J]. Chem Eng Oil Gas, 1998,27(3):149-151.  

    8. [8]

      ZHOU Shou-zu. Production technology and application foreground of methyl formate[J]. Chem Technol Market, 2003,26(2):13-18.  

    9. [9]

      LI Zhen-xiang. Brief discussion on methanol carbonylation to synthesize methyl formate[J]. Small Nitrogen Fert Des Technol, 2003,24(1):60-62.  

    10. [10]

      WANG Qing-song, LI Guo-ru, LI Gong. Catalytic activity of methanol dehydrogenation to MF over Cu/SBA-15 and Cu-ZnO/SBA-15 prepared by grinding and impregnation[J]. J Changzhou Univ, 2014,26(1):23-26.  

    11. [11]

      TONNER S P, TRIMM D L, WAINWEIGHT M S, CANT N W. Dehydrogenation of methanol to methyl formate over copper-catalysts[J]. Ind Eng Chem Prod Res Dev, 1984,23(3):384-388. doi: 10.1021/i300015a012

    12. [12]

      AI M. The production of methyl formate by the vapor-phase oxidation of methanol[J]. Chem Technol Market, 2003,26(2):13-18.  

    13. [13]

      AI M. The reaction of formaldehyde on various metal-oxide catalysts[J]. J Catal, 1982,77(1):279-288.  

    14. [14]

      LIU Guang-bo, ZHANG Qing-de, HAN Yi-zhuo, TSUBAKI Noritatsu, TAN Yi-sheng. Low-temperature oxidation of dimethyl ether to methyl formate with high selectivity over MoSn catalysts[J]. J Fuel Chem Technol, 2013,41(2):223-227.  

    15. [15]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoSn catalyst under mild conditions[J]. Green Chem, 2013,15(6):1501-1504. doi: 10.1039/c3gc40279g

    16. [16]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015,17(2):1057-1064. doi: 10.1039/C4GC01591F

    17. [17]

      ZHANG Z Z, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. The effects of the Mo-Sn contact interface on the oxidation reaction of dimethyl ether to methyl formate at a low reaction temperature[J]. Catal Sci Technol, 2016,6(15):6109-6117. doi: 10.1039/C6CY00460A

    18. [18]

      ZHANG Z Z, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of MoO3 crystalline structure of MoSn catalysts on selective oxidation of glycol dimethyl ether to 1, 2-propandiol[J]. , 2016,6(6):1842-1849.

    19. [19]

      ZHANG Z Z, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effect of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild condition[J]. Catal Sci Technol, 2016,6(9):2975-2983. doi: 10.1039/C5CY01569C

    20. [20]

      YANG Qi, GAO Xiu-juan, FENG Ru, LI Ming-jie, ZHANG Jun-feng, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. MoSn catalyst prepared by hydrothermal synthesis method for dimethyl ether catalytic oxidation[J]. J Fuel Chem Technol, 2019,47(8):934-941.  

    21. [21]

      STAMPF S, CHEN Y, DUMESIC J A, HILL C G. Interactions of molybdenum oxide with various oxide supports:Calcination of mechanical mixtures[J]. J Catal, 1987,105(2):445-454.  

    22. [22]

      MENG Y L, WANG T, CHEN S, GONE J L. Selective oxidation of methanol to dimethoxymethane on V2O5-MoO3/γ-Al2O3 catalysts[J]. Appl Catal B:Environ, 2014,160-161(1):161-172.  

    23. [23]

      WHITING G T, KONDRAT S A, HAMMOND C, DIMITRATOS N, HUTCHINGS G J. Methyl formate formation from methanol oxidation using supported Gold-Palladium nanoparticles[J]. ACS Catal, 2015,5(2):637-644.  

    24. [24]

      GONCALVES F, MEDEIROS P R S, EON J G, APPEL L G. Active sites for ethanol oxidation over SnO2-supported molybdenum oxides[J]. Appl Catal A:Gen, 2000,193(1/2):195-202.  

    25. [25]

      HABER J, LALIK E. Catalytic properties of MoO3 revisited[J]. Catal Today, 1997,33(1/3):119-137.  

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    3. [3]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    4. [4]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    5. [5]

      Haoying ZHAILanzong WENWenjie LIAOQin LIWenjun ZHOUKun CAO . Metal-organic framework-derived sulfur-doped iron-cobalt tannate nanorods for efficient oxygen evolution reaction performance. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 1037-1048. doi: 10.11862/CJIC.20240320

    6. [6]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    7. [7]

      Hailang JIAPengcheng JIHongcheng LI . Preparation and performance of nickel doped ruthenium dioxide electrocatalyst for oxygen evolution. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1632-1640. doi: 10.11862/CJIC.20240398

    8. [8]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    9. [9]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    10. [10]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    11. [11]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    12. [12]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    13. [13]

      Sumiya Akter DristyMd Ahasan HabibShusen LinMehedi Hasan JoniRutuja MandavkarYoung-Uk ChungMd NajibullahJihoon Lee . Exploring Zn doped NiBP microspheres as efficient and stable electrocatalyst for industrial-scale water splitting. Acta Physico-Chimica Sinica, 2025, 41(7): 100079-0. doi: 10.1016/j.actphy.2025.100079

    14. [14]

      Zhanggui DUANYi PEIShanshan ZHENGZhaoyang WANGYongguang WANGJunjie WANGYang HUChunxin LÜWei ZHONG . Preparation of UiO-66-NH2 supported copper catalyst and its catalytic activity on alcohol oxidation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 496-506. doi: 10.11862/CJIC.20230317

    15. [15]

      Bing LIUHuang ZHANGHongliang HANChangwen HUYinglei ZHANG . Visible light degradation of methylene blue from water by triangle Au@TiO2 mesoporous catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 941-952. doi: 10.11862/CJIC.20230398

    16. [16]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    17. [17]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    18. [18]

      Qing LiGuangxun ZhangYuxia XuYangyang SunHuan Pang . P-Regulated Hierarchical Structure Ni2P Assemblies toward Efficient Electrochemical Urea Oxidation. Acta Physico-Chimica Sinica, 2024, 40(9): 2308045-0. doi: 10.3866/PKU.WHXB202308045

    19. [19]

      Yajin LiHuimin LiuLan MaJiaxiong LiuDehua He . Photothermal Synthesis of Glycerol Carbonate via Glycerol Carbonylation with CO2 over Au/Co3O4-ZnO Catalyst. Acta Physico-Chimica Sinica, 2024, 40(9): 2308005-0. doi: 10.3866/PKU.WHXB202308005

    20. [20]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

Metrics
  • PDF Downloads(2)
  • Abstract views(1071)
  • HTML views(268)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return