Citation: YU Xue, WANG Liang, FENG Li-juan, LI Chun-hu. Preparation of Au/BiOBr/Graphene composite and its photocatalytic performance in phenol degradation under visible light[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(8): 937-942. shu

Preparation of Au/BiOBr/Graphene composite and its photocatalytic performance in phenol degradation under visible light

Figures(6)

  • BiOBr, BiOBr/Graphene and Au/BiOBr/Graphene composites were prepared by hydrothermal synthesis and dopamine in-situ reduction method; their morphology, composition, phase structure and optical absorption properties were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), ultraviolet-visible diffuse reflection spectroscopy (DRS) and photoluminescence (PL) emission spectroscopy. The photocatalytic performance of Au/BiOBr/Graphene in phenol degradation under visible light was investigated. The results indicate that the Au/BiOBr/Graphene composite exhibits enhanced absorption in the visible light region as well as superior photocatalytic activity in the degradation of aqueous phenol, in comparison with BiOBr and BiOBr/Graphene, owing to the enhanced quantum efficiency, narrowed band gap (2.25eV) and surface plasmon resonance of Au nano particles. Over Au/BiOBr/Graphene composite, the degradation rate of phenol reaches 64% in 180min under visible light irradiation.
  • 加载中
    1. [1]

      OREGAN B, GRATZAL M. A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353:737-740. doi: 10.1038/353737a0

    2. [2]

      CHEN X, CHEN L, CHEN Y W. Self-assembly of discotic liquid crystal decorated ZnO nanoparticles for efficient hybrid solar cells[J]. Rsc Adv, 2014,4(7):3627-3632. doi: 10.1039/C3RA44980G

    3. [3]

      GUI Ming-sheng, WANG Peng-fei, YUAN Dong, YANG Yi-kun. Synthesis and visible-light photocatalytic activity of Bi2WO6/g-C3N4 composite photocatalyst[J]. Chin J Inorg Chem, 2013,29(10):2057-2064.

    4. [4]

      ZHANG Jian, ZHANG Yan, SHEN Yu-hua, LI Cun, XIE An-dong. Flower-like Bi2WO6 porous microspheres:Assembly and photocatalytic perforrmance[J]. Chin J Inorg Chem, 2012,28(4):739-744.

    5. [5]

      ZHANG X M, CHANG X F, GONDAL M A, ZHANG B, LIU Y S, JI G B. Synthesis and photocatalytic activity of graphene/BiOBr composites under visible light[J]. Appl Surf Sci, 2012,258(20):7826-7832. doi: 10.1016/j.apsusc.2012.04.049

    6. [6]

      CAO Q W, CUI X Z, YI F S, XU C. A novel CdWO4/BiOBr p-n heterojunction as visible light photocatalyst[J]. J Alloys Compd, 2016,670:12-17. doi: 10.1016/j.jallcom.2016.02.061

    7. [7]

      HUANG Y C, FAN W J, LONG B, LI H B, ZHAO F Y, LIU Z L, TONG Y X, JI H B. Visible light Bi2S3/Bi2O3/Bi2O2CO3 photocatalyst for effective degradation of organic pollutions[J]. Appl Catal B:Environ, 2016,186:68-76.

    8. [8]

      JIANG Ling-xiao, LI Ke-xin, YAN Liu-shui, DAI Yu-hua, HUANG Zhi-min. Preparation of Ag (Au)/Graphene-TiO2 composite photocatalysts and their catalytic performance under simulated sunlight irradiation[J]. Chin J Catal, 2012,33(12):1974-1981.

    9. [9]

      CHEN Jian-wei, SHI Jian-wen, WANG Xu, CUI Hao-jie, FU Ming-lai. Recent progress in the preparation and application of semiconductor/graphene composite photocatalysts[J]. Chin J Catal, 2013,34(4):621-640. doi: 10.1016/S1872-2067(12)60530-0

    10. [10]

      LIU W J, CAI J Y, LI Z H. Self-assembly of semiconductor nanoparticles/Reduced Graphene Oxide (RGO) composite aerogels for enhanced photocatalytic performance and facile recycling in aqueous photocatalysis[J]. ACS Sustainable Chem Eng, 2015,3(2):277-282. doi: 10.1021/sc5006473

    11. [11]

      HAN Dan, ZHANG Ai-wen, GAO Guan-jun, SU Hai-quan. Progress in the photocatalysis of supported-gold catalysts[J]. Chem Ind Eng Prog, 2012,31(2):435-440.  

    12. [12]

      SUN L L, ZHAO D X, SONG Z M, SHAN C X, ZHANG Z Z, LI B H, SHEN D Z. Gold nanoparticles modified ZnO nanorods with improved photocatalytic activity[J]. J Colloid Interface Sci, 2011,363(1):175-181. doi: 10.1016/j.jcis.2011.07.005

    13. [13]

      BI J H, ZHOU Z Y, CHEN M Y, LIANG S J, HE Y H, ZHANG Z Z, WU L. Plasmonic Au/CdMoO4 photocatalyst:Influence of surface plasmon resonance for selective photocatalytic oxidation of benzylic alcohol[J]. Appl Surf Sci, 2015,349:292-298. doi: 10.1016/j.apsusc.2015.04.213

    14. [14]

      LIU Y, YU H T, WANG H, CHEN S, QUAN X. Efficient H2 production over Au/graphene/TiO2 induced by surface plasmon resonance of Au and band-gap excitation of TiO2[J]. Mater Res Bull, 2014,59:111-116. doi: 10.1016/j.materresbull.2014.07.013

    15. [15]

      YU C F, DONG S Y, ZHAO J, HAN X, WANG J Z, SUN J H. Preparation and characterization of sphere-shaped BiVO4/reduced graphene oxide photocatalyst for an augmented natural sunlight photocatalytic activity[J]. J Alloys Compd, 2016,677:219-227. doi: 10.1016/j.jallcom.2016.03.249

    16. [16]

      DONG S, CUI Y, WANG Y, LI Y K, HU L M, SUN J Y, SUN J H. Designing three-dimensional acicular sheaf shaped BiVO4/reduced graphene oxide composites for efficient sunlight-driven photocatalytic degradation of dye wastewater[J]. Chem Eng J, 2014,249:102-110. doi: 10.1016/j.cej.2014.03.071

    17. [17]

      WANG N, ZHOU Y, CHEN C, CHENG L Y, DING H M. Ag-C3N4 supported graphene oxide/Ag3PO4 composite with remarkably enhanced photocatalytic activity under visible light[J]. Catal Commun, 2016,73:74-79. doi: 10.1016/j.catcom.2015.10.015

    18. [18]

      HUO Y N, ZHANG J, MIAO M, JIN Y. Solvothermal synthesis of flower-like BiOBr microspheres with highly visible-light photocatalytic performances[J]. Appl Catal B:Environ, 2012,111(3):334-341.

  • 加载中
    1. [1]

      Zhihuan XUQing KANGYuzhen LONGQian YUANCidong LIUXin LIGenghuai TANGYuqing LIAO . Effect of graphene oxide concentration on the electrochemical properties of reduced graphene oxide/ZnS. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1329-1336. doi: 10.11862/CJIC.20230447

    2. [2]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    3. [3]

      Anbang DuYuanfan WangZhihong WeiDongxu ZhangLi LiWeiqing YangQianlu SunLili ZhaoWeigao XuYuxi Tian . Photothermal Microscopy of Graphene Flakes with Different Thicknesses. Acta Physico-Chimica Sinica, 2024, 40(5): 2304027-0. doi: 10.3866/PKU.WHXB202304027

    4. [4]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    5. [5]

      Chaolin MiYuying QinXinli HuangYijie LuoZhiwei ZhangChengxiang WangYuanchang ShiLongwei YinRutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011

    6. [6]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    7. [7]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    8. [8]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    9. [9]

      Yingqi BAIHua ZHAOHuipeng LIXinran RENJun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259

    10. [10]

      Yadan LuoHao ZhengXin LiFengmin LiHua TangXilin She . Modulating reactive oxygen species in O, S co-doped C3N4 to enhance photocatalytic degradation of microplastics. Acta Physico-Chimica Sinica, 2025, 41(6): 100052-0. doi: 10.1016/j.actphy.2025.100052

    11. [11]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    12. [12]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    13. [13]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    14. [14]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    15. [15]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    16. [16]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    17. [17]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    18. [18]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    19. [19]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    20. [20]

      Menglan WeiXiaoxia OuYimeng WangMengyuan ZhangFei TengKaixuan Wang . S-scheme heterojunction g-C3N4/Bi2WO6 highly efficient degradation of levofloxacin: performance, mechanism and degradation pathway. Acta Physico-Chimica Sinica, 2025, 41(9): 100105-0. doi: 10.1016/j.actphy.2025.100105

Metrics
  • PDF Downloads(1)
  • Abstract views(1804)
  • HTML views(481)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return