Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate
- Corresponding author: WANG Mei-cong, hollyword@163.com; hollywang@syuct.edu.cn
Citation:
WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology,
;2018, 46(6): 762-768.
YANG W, LOGAN B E. Immobilization of a metal-nitrogen-carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells[J]. ChemSusChem, 2016,9(16):2226-2232. doi: 10.1002/cssc.201600573
HE Z. Development of microbial fuel cells needs to go beyond "power density"[J]. ACS Energy Lett, 2017,2(3):700-702. doi: 10.1021/acsenergylett.7b00041
XU L, ZHAO Y Q, DOHERTY L, HU Y S, HAO X D. The integrated processes for wastewater treatment based on the principle of microbial fuel cells:A review[J]. Crit Rev Environ Sci Technol, 2016,46(1):60-91. doi: 10.1080/10643389.2015.1061884
AHMAD F, ATIYEH M N, PEREIRA B, STEPHANOPOULOS G N. A review of cellulosic microbial fuel cells:Performance and challenges[J]. Biomass Bioenergy, 2013,56(56):179-188.
KADIER A, SIMAYI Y, KALIL M S, ABDESHAHIAN P, HAMID A A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas[J]. Renewable Energy, 2014,71(11):466-472.
HASSAN S H A, KIM Y S, OH S E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell[J]. Enzyme Microb Technol, 2012,51(5):269-273. doi: 10.1016/j.enzmictec.2012.07.008
CATAL T, LI K, BERMEK H, LIU H. Electricity production from twelve monosaccharides using microbial fuel cells[J]. J Power Sources, 2008,175(1):196-200. doi: 10.1016/j.jpowsour.2007.09.083
HUANG L P, ANGELIDAKI I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J]. Biotechnol Bioeng, 2008,100(3):413-422. doi: 10.1002/(ISSN)1097-0290
ZHANG Y F, MIN B K, HUANG L P, ANGELIDAKI I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells[J]. Appl Environ Microbiol, 2009,75(11):3389-3395. doi: 10.1128/AEM.02240-08
LIU R, GAO C Y, ZHAO Y G, WANG A J, LU S S, WANG M, MAQBOOL F, HUANG Q. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells[J]. Bioresour Technol, 2012,123:86-91. doi: 10.1016/j.biortech.2012.07.094
VELVIZHI G, GOUD R K, VENKATA MOHAN S. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation[J]. Bioresour Technol, 2014,115(1):214-220.
ZHANG L, LI J, ZHU X, YE D D, FU Q, LIAO Q. Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields:Effects of external resistance[J]. Ind Eng Chem Res, 2017,56(14):3767-3774. doi: 10.1021/acs.iecr.6b04619
QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells[J]. Electrochimica Acta, 2015,182:815-820. doi: 10.1016/j.electacta.2015.09.157
WANG Huan, GUO Wa-li, WANG Hong-fa, SUN Su-rong, ZHANG Jian-jun. New technology of producing sugar by acid hydrolysis of corn straw[J]. J Anhui Agri Sci, 2007,35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125
FENG Yu-jie, WANG Xin, WANG He-ming, YU Yan-ling, LI Dong-mei. Electricity generation from corn stover by cellulose degradation bacteria and exoelectrogenic bacteria[J]. J Environ Sci, 2009,29(11):2295-2299.
JABLONSKA M A, RYBARCZYK M K, LIEDER M. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells[J]. Bioresource Technol, 2016,208:117-122. doi: 10.1016/j.biortech.2016.01.062
ISMAIL Z Z, JAEEL A J. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater:influence of biocatalyst type on electricity production[J]. Sci World J, 2013,17713515.
LIU Chun-mei. Research on the effect of anode structures on the performance of microbial fuel cells and mass transfer characteristics of anodes[D]. Chongqing: Chongqing University, 2013.
LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREQUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. doi: 10.1021/es0605016
FRICKE K, HARNISCH F, SCHRODER U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy Environ Sci, 2008,1(1):144-147. doi: 10.1039/b802363h
ELMEKAWY A, HEGAB H M, DOMINGUEZ-BENETTON X, PANT D. Internal resistance of microfluidic microbial fuel cell:challenges and potential opportunities[J]. Bioresour Technol, 2013,142:672-682. doi: 10.1016/j.biortech.2013.05.061
QU You-peng, GAO Shan-shan, LV Jiang-wei, LI Da, LIU Jun-feng, TIAN Jia-yu. Application of electrochemical impedance spectroscopy in impedance test of microbial fuel cell[J]. Experiment Technol Manage, 2015,32(7):68-70.
Fengqiao Bi , Jun Wang , Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069
Wei HE , Jing XI , Tianpei HE , Na CHEN , Quan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
.
CCS Chemistry | 超分子活化底物为自由基促进高效选择性光催化氧化
. CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.Hao Chen , Dongyue Yang , Gang Huang , Xinbo Zhang . Progress on Liquid Organic Electrolytes of Li-O2 Batteries. Acta Physico-Chimica Sinica, 2024, 40(7): 2305059-0. doi: 10.3866/PKU.WHXB202305059
Jiandong Liu , Xin Li , Daxiong Wu , Huaping Wang , Junda Huang , Jianmin Ma . Anion-Acceptor Electrolyte Additive Strategy for Optimizing Electrolyte Solvation Characteristics and Electrode Electrolyte Interphases for Li||NCM811 Battery. Acta Physico-Chimica Sinica, 2024, 40(6): 2306039-0. doi: 10.3866/PKU.WHXB202306039
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Jiahe LIU , Gan TANG , Kai CHEN , Mingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023
Zhuo Han , Danfeng Zhang , Haixian Wang , Guorui Zheng , Ming Liu , Yanbing He . Research Progress and Prospect on Electrolyte Additives for Interface Reconstruction of Long-Life Ni-Rich Lithium Batteries. Acta Physico-Chimica Sinica, 2024, 40(9): 2307034-0. doi: 10.3866/PKU.WHXB202307034
Rui Yang , Hui Li , Qingfei Meng , Wenjie Li , Jiliang Wu , Yongjin Fang , Chi Huang , Yuliang Cao . Influence of PC-based Electrolyte on High-Rate Performance in Li/CrOx Primary Battery. Acta Physico-Chimica Sinica, 2024, 40(9): 2308053-0. doi: 10.3866/PKU.WHXB202308053
Zizheng LU , Wanyi SU , Qin SHI , Honghui PAN , Chuanqi ZHAO , Chengfeng HUANG , Jinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225
Kun Li , Na Gao , Shuangyan Huan , Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068
Qianli Ma , Tianbing Song , Tianle He , Xirong Zhang , Huanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106
Mingyang Men , Jinghua Wu , Gaozhan Liu , Jing Zhang , Nini Zhang , Xiayin Yao . Sulfide Solid Electrolyte Synthesized by Liquid Phase Approach and Application in All-Solid-State Lithium Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100004-0. doi: 10.3866/PKU.WHXB202309019
Aoyu Huang , Jun Xu , Yu Huang , Gui Chu , Mao Wang , Lili Wang , Yongqi Sun , Zhen Jiang , Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 2408007-0. doi: 10.3866/PKU.WHXB202408007
Xiufang Wang , Donglin Zhao , Kehua Zhang , Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025
Zilin Hu , Yaoshen Niu , Xiaohui Rong , Yongsheng Hu . Suppression of Voltage Decay through Ni3+ Barrier in Anionic-Redox Active Cathode for Na-Ion Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2306005-0. doi: 10.3866/PKU.WHXB202306005
Xin MA , Ya SUN , Na SUN , Qian KANG , Jiajia ZHANG , Ruitao ZHU , Xiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357
Bin SUN , Heyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428
Chaolin Mi , Yuying Qin , Xinli Huang , Yijie Luo , Zhiwei Zhang , Chengxiang Wang , Yuanchang Shi , Longwei Yin , Rutao Wang . Galvanic Replacement Synthesis of Graphene Coupled Amorphous Antimony Nanoparticles for High-Performance Sodium-Ion Capacitor. Acta Physico-Chimica Sinica, 2024, 40(5): 2306011-0. doi: 10.3866/PKU.WHXB202306011
(a): not enriched; (b): enriched