Citation: WANG Mei-cong, LIU Ting-ting, ZHANG Xue-jun, WU Dan, FAN Li-ping. Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 762-768. shu

Effect of anode substrate on the performance of microbial fuel cells for dealing with the straw hydrolysate

  • Corresponding author: WANG Mei-cong, hollyword@163.com; hollywang@syuct.edu.cn
  • Received Date: 19 November 2017
    Revised Date: 18 April 2018

    Fund Project: Liaoning Natural Science Foundation of China 20170540724the National Natural Science Foundation of China 41603001General Project of the Education Department of Liaoning Province L2015428the National Natural Science Foundation of China 41373127The project was supported by the National Natural Science Foundation of China (41373127, 41603001), the Program for Liaoning Excellent Talents in University of China (LR2015052), General Project of the Education Department of Liaoning Province (L2015428), The Fifth Regular Meeting of Science and Technology Cooperation Between China and Macedonia (5-5) and Liaoning Natural Science Foundation of China (20170540724)the Program for Liaoning Excellent Talents in University of China LR2015052The Fifth Regular Meeting of Science and Technology Cooperation Between China and Macedonia 5-5

Figures(11)

  • The effects of both the concentration of corn stalk hydrolysis solution and the volume of activated sludge as an anode substrate on the performance of the double chamber microbial fuel cells (MFCs) were investigated. The double chamber MFCs were built with K3[Fe(CN)6] as the catholyte. The results show that with the increase in the activated sludge volume from 1.5 to 6.0 mL, the electricity generation of MFCs increases gradually, but it decreases when the activated sludge volume reaches 7.5 mL. As the mass concentration of corn stalk hydrolysate is 0, 10, 15, 20, 30, 40 g/L, the stable voltage of MFCs is 54, 157, 248, 208, 170 and 146 mV, respectively. The best performance of MFCs is obtained with the power density of 54.6 mW/m2 and the internal resistance of 496 Ω as the activated sludge volume is 6 mL and the corn straw hydrolysate is 15 g/L. Moreover, the cyclic voltammetry curve (C-V) and electrochemical impedance spectroscopy (EIS) tests prove that the electrode process is controlled by both the charge transfer and the diffusion process, while the reaction process is controlled by the electron transfer.
  • 加载中
    1. [1]

      YANG W, LOGAN B E. Immobilization of a metal-nitrogen-carbon catalyst on activated carbon with enhanced cathode performance in microbial fuel cells[J]. ChemSusChem, 2016,9(16):2226-2232. doi: 10.1002/cssc.201600573

    2. [2]

      HE Z. Development of microbial fuel cells needs to go beyond "power density"[J]. ACS Energy Lett, 2017,2(3):700-702. doi: 10.1021/acsenergylett.7b00041

    3. [3]

      XU L, ZHAO Y Q, DOHERTY L, HU Y S, HAO X D. The integrated processes for wastewater treatment based on the principle of microbial fuel cells:A review[J]. Crit Rev Environ Sci Technol, 2016,46(1):60-91. doi: 10.1080/10643389.2015.1061884

    4. [4]

      AHMAD F, ATIYEH M N, PEREIRA B, STEPHANOPOULOS G N. A review of cellulosic microbial fuel cells:Performance and challenges[J]. Biomass Bioenergy, 2013,56(56):179-188.  

    5. [5]

      KADIER A, SIMAYI Y, KALIL M S, ABDESHAHIAN P, HAMID A A. A review of the substrates used in microbial electrolysis cells (MECs) for producing sustainable and clean hydrogen gas[J]. Renewable Energy, 2014,71(11):466-472.

    6. [6]

      HASSAN S H A, KIM Y S, OH S E. Power generation from cellulose using mixed and pure cultures of cellulose-degrading bacteria in a microbial fuel cell[J]. Enzyme Microb Technol, 2012,51(5):269-273. doi: 10.1016/j.enzmictec.2012.07.008

    7. [7]

      CATAL T, LI K, BERMEK H, LIU H. Electricity production from twelve monosaccharides using microbial fuel cells[J]. J Power Sources, 2008,175(1):196-200. doi: 10.1016/j.jpowsour.2007.09.083

    8. [8]

      HUANG L P, ANGELIDAKI I. Effect of humic acids on electricity generation integrated with xylose degradation in microbial fuel cells[J]. Biotechnol Bioeng, 2008,100(3):413-422. doi: 10.1002/(ISSN)1097-0290

    9. [9]

      ZHANG Y F, MIN B K, HUANG L P, ANGELIDAKI I. Generation of electricity and analysis of microbial communities in wheat straw biomass-powered microbial fuel cells[J]. Appl Environ Microbiol, 2009,75(11):3389-3395. doi: 10.1128/AEM.02240-08

    10. [10]

      LIU R, GAO C Y, ZHAO Y G, WANG A J, LU S S, WANG M, MAQBOOL F, HUANG Q. Biological treatment of steroidal drug industrial effluent and electricity generation in the microbial fuel cells[J]. Bioresour Technol, 2012,123:86-91. doi: 10.1016/j.biortech.2012.07.094

    11. [11]

      VELVIZHI G, GOUD R K, VENKATA MOHAN S. Anoxic bio-electrochemical system for treatment of complex chemical wastewater with simultaneous bioelectricity generation[J]. Bioresour Technol, 2014,115(1):214-220.

    12. [12]

      ZHANG L, LI J, ZHU X, YE D D, FU Q, LIAO Q. Startup performance and anodic biofilm distribution in continuous-flow microbial fuel cells with serpentine flow fields:Effects of external resistance[J]. Ind Eng Chem Res, 2017,56(14):3767-3774. doi: 10.1021/acs.iecr.6b04619

    13. [13]

      QUAN X C, SUN B, XU H D. Anode decoration with biogenic Pd nanoparticles improved power generation in microbial fuel cells[J]. Electrochimica Acta, 2015,182:815-820. doi: 10.1016/j.electacta.2015.09.157

    14. [14]

      WANG Huan, GUO Wa-li, WANG Hong-fa, SUN Su-rong, ZHANG Jian-jun. New technology of producing sugar by acid hydrolysis of corn straw[J]. J Anhui Agri Sci, 2007,35(35):11603-11605. doi: 10.3969/j.issn.0517-6611.2007.35.125

    15. [15]

      FENG Yu-jie, WANG Xin, WANG He-ming, YU Yan-ling, LI Dong-mei. Electricity generation from corn stover by cellulose degradation bacteria and exoelectrogenic bacteria[J]. J Environ Sci, 2009,29(11):2295-2299.  

    16. [16]

      JABLONSKA M A, RYBARCZYK M K, LIEDER M. Electricity generation from rapeseed straw hydrolysates using microbial fuel cells[J]. Bioresource Technol, 2016,208:117-122. doi: 10.1016/j.biortech.2016.01.062

    17. [17]

      ISMAIL Z Z, JAEEL A J. Sustainable power generation in continuous flow microbial fuel cell treating actual wastewater:influence of biocatalyst type on electricity production[J]. Sci World J, 2013,17713515.

    18. [18]

      LIU Chun-mei. Research on the effect of anode structures on the performance of microbial fuel cells and mass transfer characteristics of anodes[D]. Chongqing: Chongqing University, 2013. 

    19. [19]

      LOGAN B E, HAMELERS B, ROZENDAL R, SCHRODER U, KELLER J, FREQUIA S, AELTERMAN P, VERSTRAETE W, RABAEY K. Microbial fuel cells:Methodology and technology[J]. Environ Sci Technol, 2006,40(17):5181-5192. doi: 10.1021/es0605016

    20. [20]

      FRICKE K, HARNISCH F, SCHRODER U. On the use of cyclic voltammetry for the study of anodic electron transfer in microbial fuel cells[J]. Energy Environ Sci, 2008,1(1):144-147. doi: 10.1039/b802363h

    21. [21]

      ELMEKAWY A, HEGAB H M, DOMINGUEZ-BENETTON X, PANT D. Internal resistance of microfluidic microbial fuel cell:challenges and potential opportunities[J]. Bioresour Technol, 2013,142:672-682. doi: 10.1016/j.biortech.2013.05.061

    22. [22]

      QU You-peng, GAO Shan-shan, LV Jiang-wei, LI Da, LIU Jun-feng, TIAN Jia-yu. Application of electrochemical impedance spectroscopy in impedance test of microbial fuel cell[J]. Experiment Technol Manage, 2015,32(7):68-70.  

  • 加载中
    1. [1]

      Fengqiao Bi Jun Wang Dongmei Yang . Specialized Experimental Design for Chemistry Majors in the Context of “Dual Carbon”: Taking the Assembly and Performance Evaluation of Zinc-Air Fuel Batteries as an Example. University Chemistry, 2024, 39(4): 198-205. doi: 10.3866/PKU.DXHX202311069

    2. [2]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    3. [3]

      Jiahe LIUGan TANGKai CHENMingda ZHANG . Effect of low-temperature electrolyte additives on low-temperature performance of lithium cobaltate batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 719-728. doi: 10.11862/CJIC.20250023

    4. [4]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    5. [5]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    6. [6]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    7. [7]

      Mingyang Men Jinghua Wu Gaozhan Liu Jing Zhang Nini Zhang Xiayin Yao . 液相法制备硫化物固体电解质及其在全固态锂电池中的应用. Acta Physico-Chimica Sinica, 2025, 41(1): 2309019-. doi: 10.3866/PKU.WHXB202309019

    8. [8]

      Aoyu Huang Jun Xu Yu Huang Gui Chu Mao Wang Lili Wang Yongqi Sun Zhen Jiang Xiaobo Zhu . Tailoring Electrode-Electrolyte Interfaces via a Simple Slurry Additive for Stable High-Voltage Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(4): 100037-. doi: 10.3866/PKU.WHXB202408007

    9. [9]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    10. [10]

      Kun Li Na Gao Shuangyan Huan Yuzhi Wang . Design of Ideological and Political Education for the Experiment of Detecting Cadmium with Anodic Stripping Voltammetry. University Chemistry, 2024, 39(2): 155-161. doi: 10.3866/PKU.DXHX202307068

    11. [11]

      Xin MAYa SUNNa SUNQian KANGJiajia ZHANGRuitao ZHUXiaoli GAO . A Tb2 complex based on polydentate Schiff base: Crystal structure, fluorescence properties, and biological activity. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1347-1356. doi: 10.11862/CJIC.20230357

    12. [12]

      Xiufang Wang Donglin Zhao Kehua Zhang Xiaojie Song . “Preparation of Carbon Nanotube/SnS2 Photoanode Materials”: A Comprehensive University Chemistry Experiment. University Chemistry, 2024, 39(4): 157-162. doi: 10.3866/PKU.DXHX202308025

    13. [13]

      Yutong Dong Huiling Xu Yucheng Zhao Zexin Zhang Ying Wang . The Hidden World of Surface Tension and Droplets. University Chemistry, 2024, 39(6): 357-365. doi: 10.3866/PKU.DXHX202312022

    14. [14]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    15. [15]

      Yukun Chang Haoqin Huang Baolei Wang . Preparation of Trans-Cinnamic Acid via “One-Pot” Protocol of Aldol Condensation-Hydrolysis Reaction: Recommending an Improved Organic Synthesis Experiment. University Chemistry, 2024, 39(4): 322-328. doi: 10.3866/PKU.DXHX202309095

    16. [16]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

    17. [17]

      Feiya Cao Qixin Wang Pu Li Zhirong Xing Ziyu Song Heng Zhang Zhibin Zhou Wenfang Feng . Magnesium-Ion Conducting Electrolyte Based on Grignard Reaction: Synthesis and Properties. University Chemistry, 2024, 39(3): 359-368. doi: 10.3866/PKU.DXHX202308094

    18. [18]

      Quanliang Chen Zhaohui Zhou . Research on the Active Site of Nitrogenase over Fifty Years. University Chemistry, 2024, 39(7): 287-293. doi: 10.3866/PKU.DXHX202310133

    19. [19]

      Chongjing Liu Yujian Xia Pengjun Zhang Shiqiang Wei Dengfeng Cao Beibei Sheng Yongheng Chu Shuangming Chen Li Song Xiaosong Liu . Understanding Solid-Gas and Solid-Liquid Interfaces through Near Ambient Pressure X-Ray Photoelectron Spectroscopy. Acta Physico-Chimica Sinica, 2025, 41(2): 100013-. doi: 10.3866/PKU.WHXB202309036

    20. [20]

      Yikai Wang Xiaolin Jiang Haoming Song Nan Wei Yifan Wang Xinjun Xu Cuihong Li Hao Lu Yahui Liu Zhishan Bo . 氰基修饰的苝二酰亚胺衍生物作为膜厚不敏感型阴极界面材料用于高效有机太阳能电池. Acta Physico-Chimica Sinica, 2025, 41(3): 2406007-. doi: 10.3866/PKU.WHXB202406007

Metrics
  • PDF Downloads(4)
  • Abstract views(1483)
  • HTML views(156)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return