Citation: Di Guanglan, Zhu Zhiliang. Research Progress in LDH-based Photocatalysts[J]. Chemistry, ;2017, 80(3): 228-235. shu

Research Progress in LDH-based Photocatalysts

  • Corresponding author: Zhu Zhiliang, zzl@tongji.edu.cn
  • Received Date: 27 September 2016
    Accepted Date: 12 November 2016

Figures(3)

  • Layered double hydroxides (LDHs) possess various unique properties such as flexible tenability, uniform distribution of different metal cations in the metal layer, facile exchangeability of intercalated anions and topological transformation characteristics, which makes them to be used as ideal photocatalysts, catalyst supports and precursors. As one kind of novel multifunctional materials, LDH-based photocatalysts have been widely investigated in environmental remediation, energy reservation, industrial catalysis, biomedicine synthesis. However, choosing the feasible path to further optimize the performance of LDH-based photocatalysts to achieve efficient use of solar energy, high conversion efficiency and selectivity of photocatalytic reaction still remains a great challenge. In this paper, the preparation methods of LDH-based photocatalysts are classified into four types including brucite-like sheet construction, guest-intercalation sensitization, de-lamination-assembly and nanocomposite hybrid according to the structure characteristics and the mode of introducing active components. The influence of the preparation methods on photocatalytic performance of LDH-based photocatalysts are introduced and discussed in details. The latest research progress and possible photocatalytic mechanism over LDH-based photocatalysts are reviewed. Finally, the prospects for the development and application of LDH-based photocatalysts are also discussed.
  • 加载中
    1. [1]

      M R Hoffmann, J A Moss, M M Baum. Dalton Transac., 2011, 40:5151-5158. 

    2. [2]

      H Pan. Renew. Sust. Energ. Rev., 2016, 57:584-601. 

    3. [3]

      H F Cheng, B B Huang, Y Y Liu et al. Chem. Commun., 2012, 48:9729-31. 

    4. [4]

      Y Deng, J Liu, J Wang. Adv. Mater., 2014, 26(3):471-476. 

    5. [5]

       

    6. [6]

      N Shaham-Waldmann, Y Paz. Mat. Sci. Semicon. Proc., 2016, 42:72-80. 

    7. [7]

      P Zhang, T Wang, X X Chang et al. Acc. Chem. Res., 2016, 49:911-927. 

    8. [8]

      C X Feng, G G Li, P H Ren et al. Appl. Catal. B, Environ., 2014, 158-159:224-232.

    9. [9]

      H L Wang, L S Zhang, Z G Chen et al. Chem. Soc. Rev., 2014, 43:5234-5244. 

    10. [10]

      Y J Yao, J C Qin, H Chen et al. J. Hazard. Mater., 2015, 291:28-37. 

    11. [11]

      P J Sideris, U G Nielsen, Z Gan et al. Science, 2008, 321:113-117. 

    12. [12]

      M F Shao, F Y Ning, J W Zhao et al. J. Am. Chem. Soc., 2012, 134:1071-1077. 

    13. [13]

      S He, M Wei, D G Evans et al. Chem. Commun., 2013, 49:5912-5920. 

    14. [14]

      B Sels, D D Vos, M Buntinx et al. Nature, 1999, 400:855-857. 

    15. [15]

      W Gao, Y Zhao, H Chen et al. Green Chem., 2015, 17:1525-1534. 

    16. [16]

       

    17. [17]

      S Y Guan, R Z Liang, C Y Li et al. J. Mater. Chem. B, 2016, 4:1331-1336. 

    18. [18]

      S M Xu, T Pan, Y B Dou et al. J. Phys. Chem. C, 2015, 119:18823-18834. 

    19. [19]

      K Teramura, S Iguchi, Y Mizuno et al. Angew. Chem. Int. Ed., 2012, 51:8008-8011. 

    20. [20]

      J Ju, J Bai, X Bo et al. Electrochim. Acta, 2012, 78:569-575. 

    21. [21]

      C M Li, M Wei, D G Evans et al. Small, 2014, 10:4469-4486. 

    22. [22]

      C M Li, M Wei, D G Evans et al. Catal. Today, 2015, 247:163-169. 

    23. [23]

      J T Feng, Y F He, Y N Liu et al. Chem. Soc. Rev., 2015, 44:5291-5319. 

    24. [24]

      Q Wang, D O'Hare. Chem. Rev., 2012, 112:4124-4155. 

    25. [25]

      Y F Zhao, X D Jia, G I Waterhouse et al. Adv. Energy Mater., 2015, 150:1974-1994.

    26. [26]

      Y Lee, J H Choi, H J Jeon et al. Energy Environ. Sci., 2011, 4:914-920. 

    27. [27]

       

    28. [28]

      A W Xu, Y Gao, H Q Liu. J. Catal., 2002, 207:151-157. 

    29. [29]

      N Kannadasan, N Shanmugam, S Cholan et al. Mater. Charact., 2014, 97:37-46. 

    30. [30]

      M Faisal, A A Ismail, A A Ibrahim et al. Chem. Eng. J., 2013, 229:225-233. 

    31. [31]

      G Morales-Mendoza, F Tzompantzi, C Garcia-Mendoza et al. Appl. Clay Sci., 2015, 118:38-47. 

    32. [32]

      C G Silva, Y Bouizi, V Fornés et al. J. Am. Chem. Soc., 2009, 131:13833-13839. 

    33. [33]

      Y F Zhao, B Li, Q Wang et al. Chem. Sci., 2014, 5:951-958. 

    34. [34]

      S Iguchi, S Kikkawa, T Kentaro et al. Phys. Chem. Chem. Phys., 2016, 18:13811-13819. 

    35. [35]

      S Xia, L Zhang, X Zhou et al. Appl. Clay Sci., 2015, 114:577-585. 

    36. [36]

      P R Chowdhury, K G Bhattacharyya. RSC Adv., 2015, 5:92189-92206. 

    37. [37]

      S J Kim, Y Lee, D K Lee et al. J. Mater. Chem. A, 2014, 2:4136-4139. 

    38. [38]

      J Fahel, S Kim, P Durand et al. Dalton Transac., 2016, 45:8224-8235. 

    39. [39]

      J Liu, G Zhang. Phys. Chem. Chem. Phys., 2014, 16:8178-8192. 

    40. [40]

      G Mendoza-Damián, F Tzompantzi, A Mantill et al. J. Hazard. Mater., 2013, 263:67-72. 

    41. [41]

      F Tzompantzi, A Mantilla, F Bañuelos et al. Top. Catal., 2011, 54:257-263. 

    42. [42]

      J Prince, F Tzompantzi, G Mendoza-Damián et al. Appl. Catal. B Environ., 2015, 163:352-360. 

    43. [43]

      S He, S T Zhang, J Lu et al. Chem. Commun., 2011, 47:10797-10799. 

    44. [44]

      J Y Zhu, Z L Zhu, H Zhang et al. J. Colloid Interf. Sci., 2016, 481:144-157. 

    45. [45]

      G L Fan, F Li, D G Evans et al. Chem. Soc. Rev., 2014, 43:7040-7066. 

    46. [46]

      C Nan, G Fan, J Fan et al. Mater. Lett., 2013, 106:5-7. 

    47. [47]

      F E Osterloh. Chem. Soc. Rev., 2013, 42:2294-2320. 

    48. [48]

      J Hong, Z L Zhu, H T Lu et al. Chem. Eng. J., 2014, 252:267-274. 

    49. [49]

      X R Gao, M Hu, L X Lei et al. Chem. Commun., 2011, 47:2104-2106. 

    50. [50]

      S K Parayil, J Baltrusaitis, C M Wu et al. Int. J. Hydrogen Energy, 2013, 38:2656-2669. 

    51. [51]

      Q Wang, Y Feng, J Feng et al. J. Soli. Stat. Chem., 2011, 184:1551-1555. 

    52. [52]

      G Bottari, I T G De, D M Guldi et al. Chem. Rev., 2010, 110:6768-6781. 

    53. [53]

      Z Xiong, Y Xu. Chem. Mater., 2007, 19:1452-1458. 

    54. [54]

      S Omwoma, W Chen, R Tsunashima et al. Coord. Chem. Rev., 2014, 258-259:58-71.

    55. [55]

      J Zhu, H Fan, J Sun et al. Sep. Purif. Technol., 2013, 120:134-140. 

    56. [56]

      L Mohapatra, K Parida, M Satpathy. J. Phys. Chem. C, 2012, 116:13063-13070.

    57. [57]

      K Katsumata, K Sakai, K Ikeda et al. Mater. Lett., 2013, 107:138-140. 

    58. [58]

      S Kawamura, M C Puscasu, Y Yoshida et al. Appl. Catal. A, Gen., 2015, 504:238-247. 

    59. [59]

      Y Wei, F C Li, L Liu. RSC Adv., 2014, 4:18044-18051. 

    60. [60]

      M Adachi-Pagano, C Forano, J P Besse. Chem. Commnn., 2000, 1:91-92.

    61. [61]

      J L Gunjakar, T W Kim, H N Kim et al. J. Am. Chem. Soc., 2011, 133:14998-5007. 

    62. [62]

       

    63. [63]

       

    64. [64]

      Z J Huang, P X Wu, B N Gong et al. J. Mater. Chem. A, 2014, 2:5534-5540. 

    65. [65]

      G H Zhang, B Z Lin, W W Yan et al. RSC Adv., 2015, 5:5823-5829. 

    66. [66]

      G Carja, A Nakajima, S Dranca et al. J. Phys. Chem. C, 2010, 114:14722-14728. 

    67. [67]

      Y Guo, H Zhang, Y Wang et al. J. Phys. Chem. B, 2005, 109:21602-21607. 

    68. [68]

      Y H Ao, D D Wang, P F Wang et al. Mater. Res. Bull., 2016, 80:23-29. 

    69. [69]

      W He, Y Yang, L Wang et al. ChemSusChem, 2015, 8:1568-1576. 

    70. [70]

      Y B Dou, S T Zhang, T Pan et al. Adv. Funct. Mater., 2015, 25:2243-2249. 

    71. [71]

      J Yu, L Lu, J Li et al. RSC Adv., 2016, 6:12797-12808. 

    72. [72]

      L Li, Y Feng, Y Li et al. Angew. Chem. Int. Ed., 2009, 48:5888-5892. 

    73. [73]

      H Wang, X Xiang, F Li. AIChE J. 2010, 56(3):768-778. 

    74. [74]

      B Li, Y Zhao, S Zhang et al. ACS Appl. Mater. Interf., 2013, 5:10233-10239. 

    75. [75]

      S Nayak, L Mohapatra, K Parida. J. Mater. Chem. A, 2015, 3:18622-18635. 

    76. [76]

      Z W Zhao, Y J Sun, F Dong. Nanoscale, 2015, 7:15-37. 

    77. [77]

      J Yang, H H Chen, J H Gao et al. Mater. Lett., 2016, 164:183-189. 

    78. [78]

      N N Wang, Y Zhou, C H Chen et al. Catal. Commun., 2016, 73:74-79. 

    79. [79]

      Y Hou, Z H Wen, S M Cui et al. Nano Lett., 2016, 16:2268-2277. 

    80. [80]

      F Tzompantzi, G Mendoza, J L Rico et al. Catal. Today, 2014, 220:56-60.

    81. [81]

       

  • 加载中
    1. [1]

      Liu LinZemin SunHuatian ChenLian ZhaoMingyue SunYitao YangZhensheng LiaoXinyu WuXinxin LiCheng Tang . Recent Advances in Electrocatalytic Two-Electron Water Oxidation for Green H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(4): 2305019-0. doi: 10.3866/PKU.WHXB202305019

    2. [2]

      Meiran LiYingjie SongXin WanYang LiYiqi LuoYeheng HeBowen XiaHua ZhouMingfei Shao . Nickel-Vanadium Layered Double Hydroxides for Efficient and Scalable Electrooxidation of 5-Hydroxymethylfurfural Coupled with Hydrogen Generation. Acta Physico-Chimica Sinica, 2024, 40(9): 2306007-0. doi: 10.3866/PKU.WHXB202306007

    3. [3]

      Yingchun ZHANGYiwei SHIRuijie YANGXin WANGZhiguo SONGMin WANG . Dual ligands manganese complexes based on benzene sulfonic acid and 2, 2′-bipyridine: Structure and catalytic properties and mechanism in Mannich reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1501-1510. doi: 10.11862/CJIC.20240078

    4. [4]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    5. [5]

      Zijian Jiang Yuang Liu Yijian Zong Yong Fan Wanchun Zhu Yupeng Guo . Preparation of Nano Zinc Oxide by Microemulsion Method and Study on Its Photocatalytic Activity. University Chemistry, 2024, 39(5): 266-273. doi: 10.3866/PKU.DXHX202311101

    6. [6]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    7. [7]

      Xia ZHANGYushi BAIXi CHANGHan ZHANGHaoyu ZHANGLiman PENGShushu HUANG . Preparation and photocatalytic degradation performance of rhodamine B of BiOCl/polyaniline. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 913-922. doi: 10.11862/CJIC.20240255

    8. [8]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    9. [9]

      Jingyu Cai Xiaoyu Miao Yulai Zhao Longqiang Xiao . Exploratory Teaching Experiment Design of FeOOH-RGO Aerogel for Photocatalytic Benzene to Phenol. University Chemistry, 2024, 39(4): 169-177. doi: 10.3866/PKU.DXHX202311028

    10. [10]

      Ronghui LI . Photocatalysis performance of nitrogen-doped CeO2 thin films via ion beam-assisted deposition. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1123-1130. doi: 10.11862/CJIC.20240440

    11. [11]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

    12. [12]

      Jingping LiSuding YanJiaxi WuQiang ChengKai Wang . Improving hydrogen peroxide photosynthesis over inorganic/organic S-scheme photocatalyst with LiFePO4. Acta Physico-Chimica Sinica, 2025, 41(9): 100104-0. doi: 10.1016/j.actphy.2025.100104

    13. [13]

      Ke LiChuang LiuJingping LiGuohong WangKai Wang . Architecting Inorganic/Organic S-Scheme Heterojunction of Bi4Ti3O12 Coupling with g-C3N4 for Photocatalytic H2O2 Production from Pure Water. Acta Physico-Chimica Sinica, 2024, 40(11): 2403009-0. doi: 10.3866/PKU.WHXB202403009

    14. [14]

      Yuchen ZhouHuanmin LiuHongxing LiXinyu SongYonghua TangPeng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-0. doi: 10.1016/j.actphy.2025.100067

    15. [15]

      Heng ChenLonghui NieKai XuYiqiong YangCaihong Fang . Remarkable Photocatalytic H2O2 Production Efficiency over Ultrathin g-C3N4 Nanosheet with Large Surface Area and Enhanced Crystallinity by Two-Step Calcination. Acta Physico-Chimica Sinica, 2024, 40(11): 2406019-0. doi: 10.3866/PKU.WHXB202406019

    16. [16]

      Yuting BaiCenqi YanZhen LiJiaqiang QinPei Cheng . Preparation of High-Strength Polyimide Porous Films with Thermally Closed Pore Property by In Situ Pore Formation Method. Acta Physico-Chimica Sinica, 2024, 40(9): 2306010-0. doi: 10.3866/PKU.WHXB202306010

    17. [17]

      Ruolin CHENGYue WANGXiyao NIUHuagen LIANGLing LIUShijian LU . Efficient photothermal catalytic CO2 cycloaddition over W18O49/rGO composites. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1276-1284. doi: 10.11862/CJIC.20240424

    18. [18]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    19. [19]

      Changjun YouChunchun WangMingjie CaiYanping LiuBaikang ZhuShijie Li . Improved Photo-Carrier Transfer by an Internal Electric Field in BiOBr/N-rich C3N5 3D/2D S-Scheme Heterojunction for Efficiently Photocatalytic Micropollutant Removal. Acta Physico-Chimica Sinica, 2024, 40(11): 2407014-0. doi: 10.3866/PKU.WHXB202407014

    20. [20]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

Metrics
  • PDF Downloads(34)
  • Abstract views(4691)
  • HTML views(1786)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return