Citation: ZHUANG Xiu-zheng, SONG Yan-pei, ZHAN Hao, YIN Xiu-li, WU Chuang-zhi. Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1437-1446. shu

Synergistic effects in co-combusting of hydrochar derived from sewage sludge with different-rank coals

  • Corresponding author: YIN Xiu-li, xlyin@ms.giec.ac.cn
  • Received Date: 6 August 2018
    Revised Date: 19 September 2018

    Fund Project: the National Key R & D Project 2016YFE0203300The project was supported by the National Key R & D Project (2016YFE0203300), the Guangdong Natural Science Foundation (2017B030308002) and the Guangzhou Science and Technology Project (201803030006)the Guangdong Natural Science Foundation 2017B030308002the Guangzhou Science and Technology Project 201803030006

Figures(5)

  • Differences on organic/inorganic structures and fuel properties between sewage sludge-derived hydrochar and different-rank coals were investigated and compared with the help of FT-IR, XRF and XRD technologies. Meanwhile, the combustion behavior under various blending ratio and its synergistic effects was identified via TG and deviation analysis. The results demonstrates that the organic structures and combustion behaviors of hydrochar are similar to those of coals, which not only improves the combustion properties of sewage sludge, but also enhances the synergistic effects in co-combustion of hydrochar and coals. During the co-combustion process, light volatiles and (alkaline) alkaline-earth metals in hydrochar could accelerate the weight loss rate for coals, reaching 4.4%-16.1%, 1.9%-9.4% and 4.8%-12.1% for lignite, bitumite and anthracite, respectively. In general, the blends with 30% hydrochar and 70% lignite or 50% hydrochar and 50% lignite are better than other blends in terms of comprehensive combustion evolutions.
  • 加载中
    1. [1]

      PARSHETTI G K, LIU Z G, JAIN A, SRINIVASAN M P, BALASUBRAMANIAN R. Hydrothermal carbonization of sewage sludge for energy production with coal[J]. Fuel, 2013,111:201-210. doi: 10.1016/j.fuel.2013.04.052

    2. [2]

      LEE Y J, LEE D W, PARK J H, BAE J S, KIM J G, KIM J H, PARK S J, JEON C H, CHOI Y C. Two-in-one fuel combining sewage sludge and bioliquid[J]. ACS Sustainable Chem Eng, 2016,4(6):3276-3284. doi: 10.1021/acssuschemeng.6b00314

    3. [3]

      WANG Z Q, HONG C, XING Y, LI Y F, FENG L H, JIA M M. Combustion behaviors and kinetics of sewage sludge blended with pulverized coal:With and without catalysts[J]. Waste Manage, 2018,74:288-296. doi: 10.1016/j.wasman.2018.01.002

    4. [4]

      XIE C D, LIU J Y, XIE W M, KUO J H, LU X W, ZHANG X C, HE Y, SUN J, CHANG K L, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Quantifying thermal decomposition regimes of textile dyeing sludge, pomelo peel, and their blends[J]. Renewable Energy, 2018,122:55-64. doi: 10.1016/j.renene.2018.01.093

    5. [5]

      ZHANG Guang-yi, MA Da-zhao, PENG Cui-na, XU Guang-wen. Hydrothermal treatment of antibiotic mecelial dregs for solid bio-fuel preperation[J]. J Chem Ind Eng, 2013,64(10):3741-3749.  

    6. [6]

      ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Optimization of hydrothermal process for solid fuel derived from sewage sludge by response surface methodology[J]. Adv New Renewable Energy, 2017,5(5):325-332. doi: 10.3969/j.issn.2095-560X.2017.05.001

    7. [7]

      ZHUANG Xiu-zheng, HUANG Yan-qin, YIN Xiu-li, WU Chuang-zhi. Research on clean solid fuel derived from sludge employing hydrothermal treatment[J]. Chem Ind Eng Prog, 2018,37(1):311-318.  

    8. [8]

      ZHAO P T, SHEN Y F, GE S F, CHEN Z Q, YOSHIKAWA K. Clean solid biofuel production from high moisture content waste biomass employing hydrothermal treatment[J]. Appl Energy, 2014,131:345-367. doi: 10.1016/j.apenergy.2014.06.038

    9. [9]

      HE C, GIANNIS A, WANG J Y. Conversion of sewage sludge to clean solid fuel using hydrothermal carbonization:Hydrochar fuel characteristics and combustion behavior[J]. Appl Energy, 2013,111(11):257-266.  

    10. [10]

      HE C, WANG K, YANG Y, WANG J Y. Utilization of sewage-sludge-derived hydrochars toward efficient cocombustion with different-rank coals:Effects of subcritical water conversion and blending scenarios[J]. Energy Fuels, 2014,28(9):6140-6150. doi: 10.1021/ef501386g

    11. [11]

      ZHUANG X, ZHAN H, HUANG Y, SONG Y, YIN X, WU C. Conversion of industrial biowastes to clean solid fuels via hydrothermal carbonization (HTC):Upgrading mechanism in relation to coalification process and combustion behavior[J]. Bioresour Technol, 2018,267:17-29. doi: 10.1016/j.biortech.2018.07.002

    12. [12]

      OTERO M, GOMEZ X, GARCIA A I, MORAN A. Effects of sewage sludge blending on the coal combustion:A thermogravimetric assessment[J]. Chemosphere, 2007,69(11):1740-1750. doi: 10.1016/j.chemosphere.2007.05.077

    13. [13]

      LIU Z G, QUEK A, HOEKMAN S K, SRINIVASAN M P, BALASUBRAMANIAN R. Thermogravimetric investigation of hydrochar-lignite co-combustion[J]. Bioresour Technol, 2012,123:646-652. doi: 10.1016/j.biortech.2012.06.063

    14. [14]

      LIN Y, LIAO Y, YU Z, FANG S, MA X. The investigation of co-combustion of sewage sludge and oil shale using thermogravimetric analysis[J]. Thermochim Acta, 2017,653:71-78. doi: 10.1016/j.tca.2017.04.003

    15. [15]

      SMITH A M, SINGH S, ROSS A B. Fate of inorganic material during hydrothermal carbonisation of biomass:Influence of feedstock on combustion behaviour of hydrochar[J]. Fuel, 2016,169:135-145. doi: 10.1016/j.fuel.2015.12.006

    16. [16]

      CHEN W D, WANG F, KANHAR A H. Sludge acts as a catalyst for coal during the Co-combustion process investigated by thermogravimetric analysis[J]. Energies, 2017,10(12).

    17. [17]

      CAO J P, LI L Y, MORISHITA K, XIAO X B, ZHAO X Y, WEI X Y, TAKARADA T. Nitrogen transformations during fast pyrolysis of sewage sludge[J]. Fuel, 2013,104(2):1-6.  

    18. [18]

      ZHUANG X Z, HUANG Y Q, SONG Y P, ZHAN H, YIN X L, WU C Z. The transformation pathways of nitrogen in sewage sludge during hydrothermal treatment[J]. Bioresour Technol, 2017,245:463-470. doi: 10.1016/j.biortech.2017.08.195

    19. [19]

      MAGDZIARZ A, DALAI A K, KOZINSKI J A. Chemical composition, character and reactivity of renewable fuel ashes[J]. Fuel, 2016,176:135-145. doi: 10.1016/j.fuel.2016.02.069

    20. [20]

      SONIBARE O O, HAEGER T, FOLEY S F. Structural characterization of Nigerian coals by X-ray diffraction, Raman and FT-IR spectroscopy[J]. Energy, 2010,35(12):5347-5353. doi: 10.1016/j.energy.2010.07.025

    21. [21]

      BAYSAL M, YURUM A, YILDIZ B, YURUM Y. Structure of some western Anatolia coals investigated by FT-IR, Raman, C-13 solid state NMR spectroscopy and X-ray diffraction[J]. Int J Coal Geol, 2016,163:166-176. doi: 10.1016/j.coal.2016.07.009

    22. [22]

      XIE C D, LIU J Y, ZHANG X C, XIE W M, SUN J, CHANG K L, KUO J H, XIE W H, LIU C, SUN S Y, BUYUKADA M, EVRENDILEK F. Co-combustion thermal conversion characteristics of textile dyeing sludge and pomelo peel using TGA and artificial neural networks[J]. Appl Energy, 2018,212:786-795. doi: 10.1016/j.apenergy.2017.12.084

    23. [23]

      MUTHURAMAN M, NAMIOKA T, YOSHIKAWA K. A comparison of co-combustion characteristics of coal with wood and hydrothermally treated municipal solid waste[J]. Bioresour Technol, 2010,101(7):2477-2482. doi: 10.1016/j.biortech.2009.11.060

    24. [24]

      XIE W H, HUANG J L, LIU J Y, ZHAO Y J, CHANG K L, KUO J H, HE Y, SUN J, ZHENG L, XIE W M, SUN S Y, BUYUKADA M, EVRENDILEK F. Assessing thermal behaviors and kinetics of (co-) combustion of textile dyeing sludge and sugarcane bagasse[J]. Appl Therm Eng, 2018,131:874-883. doi: 10.1016/j.applthermaleng.2017.11.025

  • 加载中
    1. [1]

      Kexin DongChuqi ShenRuyu YanYanping LiuChunqiang ZhuangShijie Li . Integration of Plasmonic Effect and S-Scheme Heterojunction into Ag/Ag3PO4/C3N5 Photocatalyst for Boosted Photocatalytic Levofloxacin Degradation. Acta Physico-Chimica Sinica, 2024, 40(10): 2310013-0. doi: 10.3866/PKU.WHXB202310013

    2. [2]

      Mingjie LeiWenting HuKexin LinXiujuan SunHaoshen ZhangYe QianTongyue KangXiulin WuHailong LiaoYuan PanYuwei ZhangDiye WeiPing Gao . Accelerating the reconstruction of NiSe2 by Co/Mn/Mo doping for enhanced urea electrolysis. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-0. doi: 10.1016/j.actphy.2025.100083

    3. [3]

      Jia WangQing QinZhe WangXuhao ZhaoYunfei ChenLiqiang HouShangguo LiuXien Liu . P-Doped Carbon-Supported ZnxPyOz for Efficient Ammonia Electrosynthesis under Ambient Conditions. Acta Physico-Chimica Sinica, 2024, 40(3): 2304044-0. doi: 10.3866/PKU.WHXB202304044

    4. [4]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    5. [5]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    6. [6]

      Weikang WangYadong WuJianjun ZhangKai MengJinhe LiLele WangQinqin Liu . Green H2O2 synthesis via melamine-foam supported S-scheme Cd0.5Zn0.5In2S4/S-doped carbon nitride heterojunction: synergistic interfacial charge transfer and local photothermal effect. Acta Physico-Chimica Sinica, 2025, 41(8): 100093-0. doi: 10.1016/j.actphy.2025.100093

    7. [7]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    8. [8]

      Zhening Lou Quanxing Mao Xiaogeng Feng Lei Zhang Xu Xu Yuyang Zhang Xueyan Liu Hongling Kang Dongyang Feng Yongku Li . Practice of Implementing Blended Teaching in Shared Analytical Chemistry Course. University Chemistry, 2024, 39(2): 263-269. doi: 10.3866/PKU.DXHX202308089

    9. [9]

      Yan Liu Yuexiang Zhu Luhua Lai . Introduction to Blended and Small-Class Teaching in Structural Chemistry: Exploring the Structure and Properties of Crystals. University Chemistry, 2024, 39(3): 1-4. doi: 10.3866/PKU.DXHX202306084

    10. [10]

      Huan Zhang Linyu Pu Wei Wang Yatang Dai Xu Huang . Curriculum Development and Blended Teaching Practice in the Graduate Course on Elemental Inorganic Chemistry. University Chemistry, 2024, 39(6): 166-173. doi: 10.3866/PKU.DXHX202402010

    11. [11]

      Zhiguang Xu Xuan Xu Qiong Luo Ganquan Wang Bin Peng . Reform and Practice of Online and Offline Blended Teaching in Structural Chemistry Course. University Chemistry, 2024, 39(6): 195-200. doi: 10.3866/PKU.DXHX202310112

    12. [12]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    13. [13]

      Chengshan Yuan Xiaolong Li Xiuping Yang Xiangfeng Shao Zitong Liu Xiaolei Wang Yongwen Shen . Standardized Operational Guidelines for Mixed-Solvent Recrystallization in Organic Chemistry Experiment. University Chemistry, 2025, 40(5): 122-127. doi: 10.12461/PKU.DXHX202504073

    14. [14]

      Yuena Yang Xufang Hu Yushan Liu Yaya Kuang Jian Ling Qiue Cao Chuanhua Zhou . The Realm of Smart Hydrogels. University Chemistry, 2024, 39(5): 172-183. doi: 10.3866/PKU.DXHX202310125

    15. [15]

      Yaoyue Yang Weishang Jia Zhaoxia Ma Xiaole Jiang Yajuan Wu . Innovative Teaching Design and Practice of a Blended First-Class Course on “Physical Chemistry Experiment” in Ethnic Universities. University Chemistry, 2025, 40(7): 71-78. doi: 10.12461/PKU.DXHX202409118

    16. [16]

      Wentao Lin Wenfeng Wang Yaofeng Yuan Chunfa Xu . Concerted Nucleophilic Aromatic Substitution Reactions. University Chemistry, 2024, 39(6): 226-230. doi: 10.3866/PKU.DXHX202310095

    17. [17]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(11): 0-0.

    18. [18]

      Zhuo WANGJunshan ZHANGShaoyan YANGLingyan ZHOUYedi LIYuanpei LAN . Preparation and photocatalytic performance of CeO2-reduced graphene oxide by thermal decomposition. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1708-1718. doi: 10.11862/CJIC.20240067

    19. [19]

      Yang Lv Yingping Jia Yanhua Li Hexiang Zhong Xinping Wang . Integrating the Ideological Elements with the “Chemical Reaction Heat” Teaching. University Chemistry, 2024, 39(11): 44-51. doi: 10.12461/PKU.DXHX202402059

    20. [20]

      Yang ZHOULili YANWenjuan ZHANGPinhua RAO . Thermal regeneration of biogas residue biochar and the ammonia nitrogen adsorption properties. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1574-1588. doi: 10.11862/CJIC.20250032

Metrics
  • PDF Downloads(4)
  • Abstract views(699)
  • HTML views(96)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return