Citation: ZHANG Hui, YANG Yuan-tao, MA Jing-hong, LI Rui-feng. Adsorption equilibrium and kinetics of toluene on hierarchical mordenite[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(6): 710-716. shu

Adsorption equilibrium and kinetics of toluene on hierarchical mordenite

  • Corresponding author: MA Jing-hong, majinghong@tyut.edu.cn
  • Received Date: 5 March 2018
    Revised Date: 12 April 2018

    Fund Project: The project was supported by National Nature Science Foundation of China (U1510127)National Nature Science Foundation of China U1510127

Figures(3)

  • The adsorption isotherms and kinetic curves of toluene on a series of hierarchical mordenite zeolites with different mesoporosities were measured to investigate the effect of hierarchical pore structures of mordenite on the adsorption and kinetics. The isotherms of hierarchical mordenites show the combination of characteristics of both micropore and mesopore adsorption. Furthermore, the fitting of experimental isothermal data of toluene reveals that the isotherms of toluene can be well described by dual-sites Toth-type model. The fitting parameters and the Henry's constants (KH) and the initial heats of adsorption (Qst) calculated show that the introduction of mesopores into mordenite weakens the interaction between toluene and zeolitic surface. Additionally, the adsorption kinetic curves show that the adsorption rates of toluene on hierarchical mordenite are much larger than that on microporous mordenite, revealing the enhanced effect of mesopore on the mass transfer in zeolites.
  • 加载中
    1. [1]

      VOS A M, ROZANSKA X, SCHOONHEYDT R A, VAN SANTEN R A, HUTSCHKA F, HAFNER J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J Am Chem Soc, 2001,123(12):2799-2809. doi: 10.1021/ja001981i

    2. [2]

      PEREGO C, INGALLINA P. Combining alkylation and transalkylation for alkylaromatic production[J]. Green Chem, 2004,6(6):274-279. doi: 10.1039/b403277m

    3. [3]

      KORTUNOV P, VASENKOV S, KÄRGER J, VALIULLIN R, GOTTSCHALK P, FÉELÍA M, PEREZ M, STÖCKER M, DRESCHER B, MCELHINEY G, BERGER C, GLÄSER R, WEITKAMP J. The role of mesopores in intracrystalline transport in USY zeolite:PFG NMR diffusion study on various length scales[J]. J Am Chem Soc, 2005,127(37):13055-13059. doi: 10.1021/ja053134r

    4. [4]

      MOLINER M, ROMAN-LESHKOV Y, DAVIS M E. Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water[J]. Proc Natl Acad Sci USA, 2010,107(14):6164-6168. doi: 10.1073/pnas.1002358107

    5. [5]

      MARCILLY C R. Where and how shape selectivity of molecular sieves operates in refining and petrochemistry catalytic processes[J]. Top Catal, 2000,13(4):357-366. doi: 10.1023/A:1009007021975

    6. [6]

      CHEN N Y, DEGNAN T F, SMITH C M. Molecular transport and reaction in zeolites:Design and application of shape selective catalysts[J]. Z Phys Chem, 1995,191(Part_2)282.  

    7. [7]

      RUTHVEN D M. Diffusion in zeolites and other microporous solids[J]. Z Phys Chem, 1992,92(Part_2):269-270.

    8. [8]

      GUISNET M, MAGNOUX P. Coking and deactivation of zeolites:Influence of the Pore Structure[J]. Appl Catal, 1989,54(1):1-27. doi: 10.1016/S0166-9834(00)82350-7

    9. [9]

      PEREZ R J, CHRISTENSEN C H, EGEBLAD K, CHRISTENSEN C H, GROEN J C. Enhanced utilization of microporous crystals in catalysis by advances in materials design[J]. Chem Soc Rev, 2008,37(11):2530-2542. doi: 10.1039/b809030k

    10. [10]

      OLSBYE U, SVELLE S, BJØRGEN M, BEATO P, JANSSENS T V W, JOENSEN F, BORDIGA S, LILLERUD K P. Conversion of methanol to hydrocarbons:How zeolite cavity and pore size controls product selectivity[J]. Angew Chem, 2012,51(24):5810-5831. doi: 10.1002/anie.201103657

    11. [11]

      GROEN J C, ZHU W, BROUWER S, HUYNINK S J, KAPTEIJN F, MOULIJN A J A, PÉREZRAMÍREZ J. Direct demonstration of enhanced diffusion in mesoporous ZSM-5 zeolite obtained via controlled desilication[J]. J Am Chem Soc, 2007,129(2):355-360. doi: 10.1021/ja065737o

    12. [12]

      JANSSEN A H. Generation, characterization, and impact of mesopores in zeolite catalysts[J]. Catal Rev, 2003,45(2):297-319. doi: 10.1081/CR-120023908

    13. [13]

      KIM J, CHOI M, RYOO R. Effect of mesoporosity against the deactivation of MFI zeolite catalyst during the methanol-to-hydrocarbon conversion process[J]. J Catal, 2010,269(1):219-228. doi: 10.1016/j.jcat.2009.11.009

    14. [14]

      HARTMANN M. Hierarchical zeolites:A proven strategy to combine shape selectivity with efficient mass transport[J]. Cheminform, 2005,36(3):5880-5882.

    15. [15]

      WANG Hai-yan, SONG Pan-pan, WANG Yu-jia. Influence of hierarchically mesoporous Hβ zeolite on the performance of NiWP/Hβ-Al2O3 catalysts in diesel oil hydro-upgrading[J]. J Fuel Chem Technol, 2016,44(4):470-476.  

    16. [16]

      BAERLOCHER C, MEIER W M, OLSON D H. Atlas of Zeolite Framework Types[M]. Hodder and Stoughton:Elsevier, 1922.

    17. [17]

      VAN DONK S, BROERSMA A, GIJZEMAN O L J, VAN BOKHOVEN J A, BITTER J H, DE JONG K P. Combined diffusion, adsorption, and reaction studies of n-hexane hydroisomerization over Pt/H-mordenite in an oscillating microbalance[J]. J Catal, 2001,204(2):272-280. doi: 10.1006/jcat.2001.3393

    18. [18]

      SCHMITZ A D, SONG C. Shape-selective isopropylation of naphthalene. Reactivity of 2, 6-diisopropylnaphthalene on dealuminated mordenites[J]. Catal Today, 1996,31(1):19-25.

    19. [19]

      LEI G D, CARVILL B T, SACHTLER W M H. Single file diffusion in mordenite channels:Neopentane conversion and H/D exchange as catalytic probes[J]. Appl Catal A:Gen, 1996,142(2):347-359. doi: 10.1016/0926-860X(96)00062-2

    20. [20]

      DEJAIFVE P, AUROUX A, GRAVELLE P C, VÉDRINE J C, GABELICA Z, DEROUANE E G. Methanol conversion on acidic ZSM-5, offretite, and mordenite zeolites:A comparative study of the formation and stability of coke deposits[J]. J Catal, 1981,70(1):123-136. doi: 10.1016/0021-9517(81)90322-5

    21. [21]

      GROEN J C, SANO T, MOULIJN J A, PÉREZ-RAMÍREZ J. Alkaline-mediated mesoporous mordenite zeolites for acid-catalyzed conversions[J]. J Catal, 2007,251(1):21-27. doi: 10.1016/j.jcat.2007.07.020

    22. [22]

      SAXENA S K, VISWANADHAM N. Enhanced catalytic properties of mesoporous mordenite for benzylation of benzene with benzyl alcohol[J]. Appl Surf Sci, 2017,392:384-390. doi: 10.1016/j.apsusc.2016.09.062

    23. [23]

      ORDOMSKY V V, IVANOVA I I, KNYAZEVA E E, YUSCHENKO V V, ZAIKOVSKⅡ V I. Cumene disproportionation over micro/mesoporous catalysts obtained by recrystallization of mordenite[J]. J Catal, 2012,295(11):207-216.

    24. [24]

      DAVIS M E, DAVIS R J. Fundamentals of Chemical Reaction Engineering[M]. New York:McGraw-Hill Higher Education, 2012.

    25. [25]

      VOS A M, ROZANSKA X, SCHOONHEYDT R A, SANTEN R A V, HUTSCHKA F, HAFNER J. A theoretical study of the alkylation reaction of toluene with methanol catalyzed by acidic mordenite[J]. J Am Chem Soc, 2001,123(12):2799-2809. doi: 10.1021/ja001981i

    26. [26]

      OLSON D H, HAAG W O. Structure-Selectivity Relationship in Xylene Isomerization and Selective Toluene Disproportionation[M]. New York:ACS Publications, 1984.

    27. [27]

    28. [28]

      DAI G, HAO W M, XIAO H, MA J H, LI R F. Hierarchical mordenite zeolite nano-rods bundles favourable to bulky molecules[J]. Chem Phys Lett, 2017,686(31):111-115.

    29. [29]

      SONG A, MA J, XU D, LI R. Adsorption and diffusion of xylene Isomers on mesoporous beta zeolite[J]. Catalysts, 2015,5(4):2098-2114. doi: 10.3390/catal5042098

    30. [30]

      WEISS R F. Carbon dioxide in water and seawater:The solubility of a non-ideal gas[J]. Mar Chem, 1974,2(3):203-215. doi: 10.1016/0304-4203(74)90015-2

    31. [31]

      ZHAO H, MA J H, ZHANG Q Q, LIU Z P, LI R F. Adsorption and diffusion of n-heptane and toluene over mesoporous ZSM-5 zeolites[J]. Ind Eng Chem Res, 2014,53(35):13810-13819. doi: 10.1021/ie502496v

    32. [32]

      XU D, MA J H, SONG A X, LIU Z P, LI R F. Availability and interconnectivity of pores in mesostructured ZSM-5 zeolites by the adsorption and diffusion of mesitylene[J]. Adsorption, 2016,22(8):1083-1090. doi: 10.1007/s10450-016-9830-9

  • 加载中
    1. [1]

      Shasha Ma Zujin Yang Jianyong Zhang . Facile Synthesis of FeBTC Metal-Organic Gel and Its Adsorption of Cr2O72−: A Physical Chemistry Innovation Experiment. University Chemistry, 2024, 39(8): 314-323. doi: 10.3866/PKU.DXHX202401008

    2. [2]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    3. [3]

      Jiali CHENGuoxiang ZHAOYayu YANWanting XIAQiaohong LIJian ZHANG . Machine learning exploring the adsorption of electronic gases on zeolite molecular sieves. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 155-164. doi: 10.11862/CJIC.20240408

    4. [4]

      Fei ZHOUXiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236

    5. [5]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    6. [6]

      Xinyu Yin Haiyang Shi Yu Wang Xuefei Wang Ping Wang Huogen Yu . Spontaneously Improved Adsorption of H2O and Its Intermediates on Electron-Deficient Mn(3+δ)+ for Efficient Photocatalytic H2O2 Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312007-. doi: 10.3866/PKU.WHXB202312007

    7. [7]

      Hui Wang Abdelkader Labidi Menghan Ren Feroz Shaik Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039

    8. [8]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    9. [9]

      Jingke LIUJia CHENYingchao HAN . Nano hydroxyapatite stable suspension system: Preparation and cobalt adsorption performance. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1763-1774. doi: 10.11862/CJIC.20240060

    10. [10]

      Ping ZHANGChenchen ZHAOXiaoyun CUIBing XIEYihan LIUHaiyu LINJiale ZHANGYu'nan CHEN . Preparation and adsorption-photocatalytic performance of ZnAl@layered double oxides. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1965-1974. doi: 10.11862/CJIC.20240014

    11. [11]

      Fang Niu Rong Li Qiaolan Zhang . Analysis of Gas-Solid Adsorption Behavior in Resistive Gas Sensing Process. University Chemistry, 2024, 39(8): 142-148. doi: 10.3866/PKU.DXHX202311102

    12. [12]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    13. [13]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    14. [14]

      Fei Xie Chengcheng Yuan Haiyan Tan Alireza Z. Moshfegh Bicheng Zhu Jiaguo Yud带中心调控过渡金属单原子负载COF吸附O2的理论计算研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2407013-. doi: 10.3866/PKU.WHXB202407013

    15. [15]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    16. [16]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    17. [17]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    18. [18]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    19. [19]

      Youlin SIShuquan SUNJunsong YANGZijun BIEYan CHENLi LUO . Synthesis and adsorption properties of Zn(Ⅱ) metal-organic framework based on 3, 3', 5, 5'-tetraimidazolyl biphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1755-1762. doi: 10.11862/CJIC.20240061

    20. [20]

      Qianqian Zhong Yucui Hao Guotao Yu Lijuan Zhao Jingfu Wang Jian Liu Xiaohua Ren . Comprehensive Experimental Design for the Preparation of the Magnetic Adsorbent Based on Enteromorpha Prolifera and Its Utilization in the Purification of Heavy Metal Ions Wastewater. University Chemistry, 2024, 39(8): 184-190. doi: 10.3866/PKU.DXHX202312013

Metrics
  • PDF Downloads(5)
  • Abstract views(1580)
  • HTML views(573)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return