Citation: Gao Qi, Zhu Xiaoqin, Zhai Liangjun. Alkylamine-Mediated Synthesis and Growth Mechanism of Copper Nanorods[J]. Chemistry, ;2019, 82(12): 1093-1097. shu

Alkylamine-Mediated Synthesis and Growth Mechanism of Copper Nanorods

  • Corresponding author: Zhai Liangjun, zhailiangjun@jsut.edu.cn
  • Received Date: 9 June 2019
    Accepted Date: 23 September 2019

Figures(6)

  • Uniform Cu nanoparticles were synthesized via complexation reaction and solvothermal reaction by using copper chloride as reaction precursor, glucose as reducing agent and alkylamine (mixture of hexadecylamine and octadecylamine) as complexing agents and surface capping agents. Subsequently, the Cu nanoparticles which were 100 nm in diameter spontaneously grew into Cu nanorods (including nanoparticles). The morphological characteristics of the reduction products after solvothermal reaction for 1h, 3h and 5h were characterized respectively. It is deduced that the reduced Cu atoms first nucleated uniformly to form primary Cu nanoparticles, and then grew into five-fold twin secondary Cu nanoparticles through Ostwald aging process. Eventually, due to the high growth activity of the twin structure, anisotropy Cu nanorods were simply prepared under the surface coating of alkylamine. This strategy could provide an effective method for preparing copper nanorods and reduce the cost of synthesis of one-dimensional Cu nanomaterials.
  • 加载中
    1. [1]

      H Chen, L Shao, Q Li et al. Chem. Soc. Rev., 2013, 42(7): 2679~2724. 

    2. [2]

      H G Im, S H Jung, J Jin et al. ACS Nano, 2014, 8(10):10973~10979. 

    3. [3]

      N Qi, B Zhao, S D Wang et al. RSC Adv., 2015, 5(63): 50878~50882. 

    4. [4]

      M Cao, H U Changwen, Y Wang et al. Chem. Commun., 2003, 9(15): 1884~1885.

    5. [5]

      H Wu, L Hu, M W Rowell et al. Nano Lett., 2010, 10(10): 4242~4248. 

    6. [6]

      Y Zhao, Y Zhang, Y Li et al. RSC Adv., 2012, 2(30): 11544~11551. 

    7. [7]

      A R Rathmell, S M Bergin, Y L Hua et al. Adv. Mater., 2010, 22(32): 3558~3563. 

    8. [8]

      A R Rathmell, B J Wiley. Adv. Mater., 2011, 23(41):4798~4803. 

    9. [9]

      H Guo, N Lin, Y Chen et al. Sci. Rep., 2013, 3(7):670~692.

    10. [10]

      Z Liu, Y Bando. Chem. Phys. Lett., 2003, 378(1-2):85~88. 

    11. [11]

      P I Wang, T C Parker, T Karabacak et al. Nanotechnology, 2009, 20(8): 085605. 

    12. [12]

       

    13. [13]

      X Chen, H Duan, Z Zhou et al. Nanotechnology, 2008, 19(36): 365306. 

    14. [14]

      A Filankembo, M P Pileni. J. Phys. Chem. B, 2000, 104(25): 5865~5868. 

    15. [15]

      X Zhang, D Zhang, X Ni et al. Solid State Commun., 2006, 139(8): 412~414. 

    16. [16]

      H J Yang, S Y He, H Y Tuan. Langmuir, 2014, 30(2): 602~610.

    17. [17]

      D V Ravi Kumar, I Kim, Z Zhong et al. Phys. Chem. Chem. Phys, 2014, 16(40): 22107~22115. 

    18. [18]

      N B Ming, I Sunagawa. Cryst. Growth, 1988, 87: 13~17. 

    19. [19]

      J L Elechiguerra, J Reyes-Gasga, M J Yacaman. Mater. Chem., 2006, 16: 3906~3919. 

    20. [20]

      Y Sun, B Mayers, T Herricks et al. Nano Lett., 2003, 3: 955~960. 

    21. [21]

      C Y Ni, P A Hassan, E W Kaler. Langmuir, 2005, 21: 3334~3337. 

  • 加载中
    1. [1]

      Huan LIShengyan WANGLong ZhangYue CAOXiaohan YANGZiliang WANGWenjuan ZHUWenlei ZHUYang ZHOU . Growth mechanisms and application potentials of magic-size clusters of groups Ⅱ-Ⅵ semiconductors. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1425-1441. doi: 10.11862/CJIC.20240088

    2. [2]

      Yajie LiBin ChenYiping WangHui XingWei ZhaoGeng ZhangSiqi Shi . Inhibiting Dendrite Growth by Customizing Electrolyte or Separator to Achieve Anisotropic Lithium-Ion Transport: A Phase-Field Study. Acta Physico-Chimica Sinica, 2024, 40(3): 2305053-0. doi: 10.3866/PKU.WHXB202305053

    3. [3]

      Hong LIXiaoying DINGCihang LIUJinghan ZHANGYanying RAO . Detection of iron and copper ions based on gold nanorod etching colorimetry. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 953-962. doi: 10.11862/CJIC.20230370

    4. [4]

      Qin LiHuihui ZhangHuajun GuYuanyuan CuiRuihua GaoWei-Lin DaiIn situ Growth of Cd0.5Zn0.5S Nanorods on Ti3C2 MXene Nanosheet for Efficient Visible-Light-Driven Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2025, 41(4): 2402016-0. doi: 10.3866/PKU.WHXB202402016

    5. [5]

      Yinyin Qian Rui Xu . Utilizing VESTA Software in the Context of Material Chemistry: Analyzing Twin Crystal Nanostructures in Indium Antimonide. University Chemistry, 2024, 39(3): 103-107. doi: 10.3866/PKU.DXHX202307051

    6. [6]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    7. [7]

      Haoyu SunDun LiYuanyuan MinYingying WangYanyun MaYiqun ZhengHongwen Huang . Hierarchical Palladium-Copper-Silver Porous Nanoflowers as Efficient Electrocatalysts for CO2 Reduction to C2+ Products. Acta Physico-Chimica Sinica, 2024, 40(6): 2307007-0. doi: 10.3866/PKU.WHXB202307007

    8. [8]

      Hongpeng HeMengmeng ZhangMengjiao HaoWei DuHaibing Xia . Synthesis of Different Aspect-Ratios of Fixed Width Gold Nanorods. Acta Physico-Chimica Sinica, 2024, 40(5): 2304043-0. doi: 10.3866/PKU.WHXB202304043

    9. [9]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    10. [10]

      Guangming YINHuaiyao WANGJianhua ZHENGXinyue DONGJian LIYi'nan SUNYiming GAOBingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086

    11. [11]

      Yongjie ZHANGBintong HUANGYueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247

    12. [12]

      Huanhuan XIEYingnan SONGLei LI . Two-dimensional single-layer BiOI nanosheets: Lattice thermal conductivity and phonon transport mechanism. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 702-708. doi: 10.11862/CJIC.20240281

    13. [13]

      Jingzhuo TianChaohong GuanHaobin HuEnzhou LiuDongyuan Yang . Waste plastics promoted photocatalytic H2 evolution over S-scheme NiCr2O4/twinned-Cd0.5Zn0.5S homo-heterojunction. Acta Physico-Chimica Sinica, 2025, 41(6): 100068-0. doi: 10.1016/j.actphy.2025.100068

    14. [14]

      Lancanghong Chen Xingtai Yu Tianlei Zhao Qizhi Yao . Exploration of Abnormal Phenomena in Iodometric Copper Quantitation Experiment. University Chemistry, 2025, 40(7): 315-320. doi: 10.12461/PKU.DXHX202408089

    15. [15]

      Xiaxue Chen Yuxuan Yang Ruolin Yang Yizhu Wang Hongyun Liu . Adjustable Polychromatic Fluorescence: Investigating the Photoluminescent Properties of Copper Nanoclusters. University Chemistry, 2024, 39(9): 328-337. doi: 10.3866/PKU.DXHX202308019

    16. [16]

      Yanting HUANGHua XIANGMei PAN . Construction and application of multi-component systems based on luminous copper nanoclusters. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2075-2090. doi: 10.11862/CJIC.20240196

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Mengfei HeChao ChenYue TangSi MengZunfa WangLiyu WangJiabao XingXinyu ZhangJiahui HuangJiangbo LuHongmei JingXiangyu LiuHua Xu . Epitaxial Growth of Nonlayered 2D MnTe Nanosheets with Thickness-Tunable Conduction for p-Type Field Effect Transistor and Superior Contact Electrode. Acta Physico-Chimica Sinica, 2025, 41(2): 2310029-0. doi: 10.3866/PKU.WHXB202310029

    19. [19]

      Yingtong FANYujin YAOShouhao WANYihang SHENXiang GAOCuie ZHAO . Construction of copper tetrakis(4-carboxyphenyl)porphyrin/silver nanowire composite electrode for flexible and transparent supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1309-1317. doi: 10.11862/CJIC.20250043

    20. [20]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

Metrics
  • PDF Downloads(9)
  • Abstract views(858)
  • HTML views(202)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return