Citation: SHEN Zhi-bing, KE Ming, ZHANG Jun-tao, LIANG Sheng-rong. Effect of impregnation sequence of Mo and Ni on the performance of Mo-Ni/Al2O3 catalyst in thioetherification[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(5): 616-623. shu

Effect of impregnation sequence of Mo and Ni on the performance of Mo-Ni/Al2O3 catalyst in thioetherification

  • Corresponding author: KE Ming, keming@cup.edu.cn
  • Received Date: 12 December 2016
    Revised Date: 16 March 2017

    Fund Project: the National Natural Science Foundation of China 21276276

Figures(7)

  • Mo-Ni/Al2O3 catalysts were prepared by different impregnation sequences of Mo and Ni; the effect of impregnation sequence on the performance of Mo-Ni/Al2O3 catalysts in thioetherification was investigated. The results showed that the activity of the catalyst obtained by first impregnating Mo and then Ni (SI-mn) is close to that prepared by co-impregnation of Mo and Ni (MN); both are much more active than the catalyst obtained by first impregnating Ni and then Mo (SI-nm). For the SI-mn catalyst, Mo loaded on Al2O3 at the first stage can weaken the interaction between Ni and supporter, leading to a strong electronic effect between Ni and Mo, which can promote the formation of active phase in the presulfidation process and then enhance the catalytic performance of Mo-Ni/Al2O3 in thioetherification and selective hydrogenation of diene. Similar phenomena are observed for the MN catalyst obtained by co-impregnation, which also exhibits high activity in thioetherification.
  • 加载中
    1. [1]

      ROCK K. Producing low sulfur gasoline reliably[C]//San Antonio: NPRA Annual Meeting, 2003.

    2. [2]

      ROCK K, FOLEY R, PUTNAM H. Improvements in FCC gasoline desulfurization via catalytic distillation[C]//San Francisco: NPRA Annual Meeting, 1998.

    3. [3]

      GARDNER R, SCHWARZ E, ROCK K. Start-up of CDHydro /CDHDS unit at Irving oil's Saint John, New Brunswick refinery[C]// New Orleans: NPRA Annual Meeting, 2001.

    4. [4]

      NOCCA J, DEBUISSCHERT Q. Prime-G+: From pilot to startup of world's first commercial 10 μg·g-1 FCC gasoline[C]// San Antonio: NPRA Annual Meeting, 2002.

    5. [5]

      XIANG Yong-sheng, HUANG Jing-gang, SHI Gang, LIU Shao-fei, WU Jie, WANG Ting-hai. Commercial application of GARDES process in FCC gasoline hydrogenation unit[J]. Ind Catal, 2015,23(2):131-135.  

    6. [6]

      SHI Gang, FAN Yu, BAO Xiao-jun, WANG Ting-hai. Development and application of Gardes technology for fluid catalytic cracking gasoline hydro-upgrading[J]. Petrol Process Petrochem, 2013,44(9):66-72.  

    7. [7]

      LIU Xiao-bu, XIA Shao-qing, LIU Rui-ping, HU Yao-qiang, WANG Pei-yu. First commercial application of DSO technology in FCC gasoline hydrodesulfurization[J]. Petrol Refinery Eng, 2014,44(7):28-31.  

    8. [8]

      SHEN Z, KE M, YU P, LIU S, SONG Z, JIANG Q. Catalytic activities of Mo-modified Ni/Al2O3 catalysts for thioetherification of mercaptans and di-olefins in fluid catalytic cracking naphtha[J]. Transit Metal Chem, 2012,37(6):587-593. doi: 10.1007/s11243-012-9625-0

    9. [9]

      SHEN Z, KE M, REN T, ZHANG J, LIANG S. Effect of sulfurization temperature on thioetherification performance of Mo-Ni/Al2O3 catalyst[J]. China Pet Process Petro Chem Technol, 2015,17(4):55-61.

    10. [10]

      XIAO Zhao-jun, HUANG Xing-liang, TONG Zong-wen. Effect of preparation conditions on the catalytic properties of Ni/Al2O3 catalyst in the diene thioetherfication reaction[J]. Pet Process Petrochem, 2006,37(5):24-28.

    11. [11]

      AKSOYLU A, ISLI A, ONSAN Z. Interaction between nickel and molybdenum in Ni-Mo/Al2O3 catalysts: Ⅲ: Effect of impregnation strategy[J]. Appl Catal A: Gen, ,183(2):357-364. doi: 10.1016/S0926-860X(99)00075-7

    12. [12]

      SALERNO P, MENDIOROZ S, AGUDO A. Al-pillared montmorillonite-based NiMo catalysts for HDS and HDN of gas oil: Influence of the method and order of Mo and Ni impregnation[J]. Appl Catal A: Gen, 2004,259(1):17-28. doi: 10.1016/j.apcata.2003.09.019

    13. [13]

      FARAG H. Synthesis of CoMo-based carbon hydrodesulfurization catalysts: Influence of the order of metal impregnations on the activity[J]. Appl Catal B: Environ, 2008,84(1/2):1-8.  

    14. [14]

      SHEN Zhi-bing, KE Ming, LIU Ji-yang. Catalytic performance of Ni/A12O3 catalyst on mercaptan and isoprene thioetherifation[J]. Pet Process Petrochem, 2010,41(11):37-42. doi: 10.3969/j.issn.1005-2399.2010.11.007

    15. [15]

      ZHANG Ya-jie. Di-functional catalysts for thioetherification and hydrogenation of diene[D]. Beijing: China University of Petroleum, 2010.

    16. [16]

      UOP INC. Diene value by Maleic Anhydride addition reaction[S]. UOP Method 326-82, 1982.

    17. [17]

      REN Jing. Preparation Ni-Mo Catalyst Supported on a mixture of MCM-41 and Y zeolite deep hydrodesulfurization[D]. Dalian: Dalian University of Technology, 2006.

    18. [18]

      QU L, ZHANG W, KOOYMAN P, PRINS R. MAS NMR, TPR and TEM studies of the interaction of NiMo with alumina and silica-alumina supports[J]. J Catal, 2003,215(1):7-13. doi: 10.1016/S0021-9517(02)00181-1

    19. [19]

      LIU B, AU C. Carbon deposition and catalyst stability over La2NiO4/γ-Al2O3 during CO2 reforming of methane to syngas[J]. Appl Catal A: Gen, 2003,244(1):181-195. doi: 10.1016/S0926-860X(02)00591-4

    20. [20]

      ZNAK L, ZIELINSKI J. Effects of support on hydrogen adsorption/desorption on nickel[J]. Appl Catal A: Gen, 2008,334(1/2):268-276.  

    21. [21]

      Al-DALAMA K, STANISLAUS A. Temperature programmed reduction of SiO2-Al2O3 supported Ni, Mo and NiMo catalysts prepared with EDTA[J]. Thermochim Acta, 2011,520(1/2):67-74.  

    22. [22]

      ZIELIŃSKI J. Morphology of nickel/alumina catalysts[J]. J Catal, 1982,76(1):157-163. doi: 10.1016/0021-9517(82)90245-7

    23. [23]

      YANG R, LI X, WU J, ZHANG X, ZHANG Z, CHENG Y, GUO J. Hydrotreating of crude 2-ethylhexanol over Ni/Al2O3 catalysts: Surface Ni species-catalytic activity correlation[J]. Appl Catal A: Gen, 2009,368(1/2):105-112.

    24. [24]

      WANG R, LI Y, SHI R, YANG M. Effect of metal-support interaction on the catalytic performance of Ni/Al2O3 for selective hydrogenation of isoprene[J]. J Mol Catal A: Chem, 2011,344(1/2):122-127.

    25. [25]

      ZHANG Yu-hong, XIONG Guo-xing, SHENG Shi-shan, LIU Sheng-lin, YANG Wei-shen. Interaction of NiO with γ-Al2O3 supporter of NiO/γ-Al2O3 catalysts[J]. Acta Phys-Chim Sin, 1999,15(8):735-741.  

    26. [26]

      ZIELIŃSKI J. Morphology of nickel/alumina catalysts[J]. J Catal, 1982,76(1):157-163. doi: 10.1016/0021-9517(82)90245-7

    27. [27]

      LAI W, PANG L, ZHENG J, LI J, WU Z, YI X, FANG W, JIA L. Efficient one pot synthesis of mesoporous NiMo-Al2O3 catalysts for dibenzothiophene hydrodesulfurization[J]. Fuel Process Technol, 2013,110(1):8-16.  

    28. [28]

      DING L, ZHENG Y, YANG H. LCO hydrotreating with Mo-Ni and W-Ni supported on nano-and micro-sized zeolite beta[J]. Appl Catal A: Gen, 2009,353(1):17-23. doi: 10.1016/j.apcata.2008.10.023

    29. [29]

      WANG X, OZKAN U. Effect of pre-treatment conditions on the performance of sulfided Ni-Mo/γ-Al2O3 catalysts for hydrogenation of linear aldehydes[J]. J Mol Catal A: Chem, 2005,232(1/2):101-112.  

    30. [30]

      LI D, SATO T, IMAMURA M, SHIMADA H, NISHIJIMA A. Spectroscopic characterization of Ni-Mo/γ-Al2O3-B2O3 catalysts for hydrodesulfurization of dibenzothiophene[J]. J Catal, 1997,170(2):357-365. doi: 10.1006/jcat.1997.1730

    31. [31]

      ANDONOVA S, VLADOV C, PAWELEC B, SHTEREVA I, TYULIEV G. Effect of the modified support γ-Al2O3-CaO on the structure and hydrodesulfurization activity of Mo and Ni-Mo catalysts[J]. Appl Catal A:Gen, 2007,328(2):201-209. doi: 10.1016/j.apcata.2007.06.009

    32. [32]

      NINH T, MASSIN D, LAURENTI D, VRINAT M. A new approach in the evaluation of the support effect for NiMo hydrodesulfurization catalysts[J]. Appl Catal A: Gen, 2011,407:29-39. doi: 10.1016/j.apcata.2011.08.019

  • 加载中
    1. [1]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    2. [2]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    3. [3]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    4. [4]

      Zhi Chai Huashan Huang Xukai Shi Yujing Lan Zhentao Yuan Hong Yan . Wittig反应的立体选择性. University Chemistry, 2025, 40(8): 192-201. doi: 10.12461/PKU.DXHX202410046

    5. [5]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    6. [6]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    7. [7]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    8. [8]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    9. [9]

      Nan Xiao Fang Sun . 二芳基硫醚化合物的构建及应用. University Chemistry, 2025, 40(6): 360-363. doi: 10.12461/PKU.DXHX202407099

    10. [10]

      Yunhao Zhang Yinuo Wang Siran Wang Dazhen Xu . Progress in Selective Construction of Functional Aromatics from Nitrogenous Cycloalkanes. University Chemistry, 2024, 39(11): 136-145. doi: 10.3866/PKU.DXHX202401083

    11. [11]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    12. [12]

      Shihui Shi Haoyu Li Shaojie Han Yifan Yao Siqi Liu . Regioselectively Synthesis of Halogenated Arenes via Self-Assembly and Synergistic Catalysis Strategy. University Chemistry, 2024, 39(5): 336-344. doi: 10.3866/PKU.DXHX202312002

    13. [13]

      Jingkun YuXue YongAng CaoSiyu Lu . Bi-Layer Single Atom Catalysts Boosted Nitrate-to-Ammonia Electroreduction with High Activity and Selectivity. Acta Physico-Chimica Sinica, 2024, 40(6): 2307015-0. doi: 10.3866/PKU.WHXB202307015

    14. [14]

      CCS Chemistry | 超分子活化底物自由基促进高效选择性光催化氧化

      . CCS Chemistry, 2025, 7(10.31635/ccschem.025.202405229): -.

    15. [15]

      Jun LUOBaoshu LIUYunchang ZHANGBingkai WANGBeibei GUOLan SHETianheng CHEN . Europium(Ⅲ) metal-organic framework as a fluorescent probe for selectively and sensitively sensing Pb2+ in aqueous solution. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2438-2444. doi: 10.11862/CJIC.20240240

    16. [16]

      Baitong Wei Jinxin Guo Xigong Liu Rongxiu Zhu Lei Liu . Theoretical Study on the Structure, Stability of Hydrocarbon Free Radicals and Selectivity of Alkane Chlorination Reaction. University Chemistry, 2025, 40(3): 402-407. doi: 10.12461/PKU.DXHX202406003

    17. [17]

      Danqing Wu Jiajun Liu Tianyu Li Dazhen Xu Zhiwei Miao . Research Progress on the Simultaneous Construction of C—O and C—X Bonds via 1,2-Difunctionalization of Olefins through Radical Pathways. University Chemistry, 2024, 39(11): 146-157. doi: 10.12461/PKU.DXHX202403087

    18. [18]

      Jinyao Du Xingchao Zang Ningning Xu Yongjun Liu Weisi Guo . Electrochemical Thiocyanation of 4-Bromoethylbenzene. University Chemistry, 2024, 39(6): 312-317. doi: 10.3866/PKU.DXHX202310039

    19. [19]

      Lijun Yue Siya Liu Peng Liu . 不同晶相纳米MnO2的制备及其对生物乙醇选择性氧化催化性能的测试——一个科研转化的综合化学实验. University Chemistry, 2025, 40(8): 225-232. doi: 10.12461/PKU.DXHX202410005

    20. [20]

      Wei SunYongjing WangKun XiangSaishuai BaiHaitao WangJing ZouArramelJizhou Jiang . CoP Decorated on Ti3C2Tx MXene Nanocomposites as Robust Electrocatalyst for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(8): 2308015-0. doi: 10.3866/PKU.WHXB202308015

Metrics
  • PDF Downloads(3)
  • Abstract views(864)
  • HTML views(139)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return