Citation: LI Ying, NIU Sheng-li, LU Chun-mei, WANG Jia-xing, PENG Jian-sheng. Molecular simulation study of NO heterogeneous reduction by biomass reburning[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(6): 689-697. shu

Molecular simulation study of NO heterogeneous reduction by biomass reburning

  • Corresponding author: NIU Sheng-li, nsl@sdu.edu.cn
  • Received Date: 18 May 2020
    Revised Date: 7 June 2020

    Fund Project: Primary Research & Development Plan of Shandong Province 2018GSF117034the National Natural Science Foundation of China 51576117Young Scholars Program of Shandong University 2015WLJH33The project was supported by the National Natural Science Foundation of China (51576117), Important Project in the Scientific Innovation of Shandong Province (2019JZZY020305), Primary Research & Development Plan of Shandong Province (2018GSF117034) and Young Scholars Program of Shandong University (2015WLJH33)Important Project in the Scientific Innovation of Shandong Province 2019JZZY020305

Figures(8)

  • A molecular modeling study based on density functional theory (DFT) and transition state theory (TST) was performed to investigate the effect of Na on the NO heterogeneous reduction by char; zero point energy correction was considered and the transition states was confirmed by frequency analysis. The results show that Na can effectively promote the adsorption of first NO molecule on to the char. The presence of Na cannot change the reaction steps, but reduce the activation energies of rate-determining steps from 121.04 kJ/mol to 100.62 kJ/mol. Moreover, the presence of Na can increase the pre-exponential factors as well as the reaction rate, meaning more active sites and enhanced catalytic performance of char in NO reduction.
  • 加载中
    1. [1]

      NIU Sheng-li, HAN Kui-hua, LU Chun-mei. Study on nitrogen oxides reduction by advanced biomass reburning process[J]. J Fuel Chem Technol, 2010,38(6):745-751.  

    2. [2]

      ZHANG Guo-xiang, CHEN Xiao-hui. Research progress in metal catalysts for catalytic reduction of NO by CO with excess oxygen[J]. Chem Ind Eng Prog, 2018,37(12):4654-4661.  

    3. [3]

      RUAN Dan, QI Yan-yong, LI Hui-dong. Numerical simulation research of the reduction of NO by CO at high temperature without catalyst[J]. Ball Chin Ceram Soc, 2016,35(6):1674-1681.  

    4. [4]

      LÓPEZ D, CALO J. The NO carbon reaction:The influence of potassium and CO on reactivity and populations of oxygen surface complexes[J]. Energy Fuels, 2007,21(4):1872-1877.  

    5. [5]

      LU P, HAO J T, YU W, ZHU X M, D X. Effects of water vapor and Na/K additives on NO reduction through advanced biomass reburning[J]. Fuel, 2015,170:60-66.  

    6. [6]

      WU X, SONG Q, ZHAO H B, YAO Q. Catalytic mechanism of inherent potassium on the Char-NO reaction[J]. Energy Fuels, 2015,29(11):7566-7571.  

    7. [7]

      ZHOU Hao, LIU Rui-peng, LIU Zi-hao, CHENG Ming, CEN Ke-fa. Influence of alkali metal on the evolution of NOx during coke combustion[J]. J China Coal Soc, 2015,40(5):1160-1164.  

    8. [8]

      LIU Yin-he, LIU Yan-hua, CHE De-fu, XU Tong-mo. Effects of minerals and sodium addition on nitrogen release during coal combustion[J]. Proc CSEE, 2005,25(4):136-141.  

    9. [9]

      ZHAO Z B, LI W, QIU J S, WANG X Z, LI B Q. Influence of Na and Ca on the emission of NOx during coal combustion[J]. Fuel, 2006,85(5):601-606.  

    10. [10]

      ZHANG X X, LIN R Y. Effect of alkali metal elements on nitric oxide chemisorption at the edge of char:A DFT study[J]. Energy Procedia, 2019,158:4805-4809.  

    11. [11]

      WEN Zheng-cheng, ZHOU Jun-hu, WANG Zhi-hua, CEN Ke-fa. Catalytic mechanism of alkali metal on NO heterogeneous reduction by char:quantum chemistry study[J]. J Zhejiang Univ-Sci(ES), 2008,42(8):1452-1457.  

    12. [12]

      PERRY S T, HAMBLY E M, FLETCHER T H, SOLUM M S, PUGMIRE R J. Solid-state 13C NMR characterization of matched tars and chars from rapid coal devolatilization[J]. Proc Combust Inst, 2000,28(2):2313-2319.  

    13. [13]

      GAO Z, YANG W, DING X, DING Y, YAN W P. Theoretical research on heterogeneous reduction of N2O by char[J]. Appl Therm Eng, 2017,126:28-36.  

    14. [14]

      XU Zi-yang, YUE Shuang, WANG Chun-bo, LIU Rui-qi. Reaction mechanism of NO reduction with CO catalyzed by char[J]. J Fuel Chem Technol, 2020,48(3):266-274.  

    15. [15]

      ZHANG Qin, ZHANG Xiu-xia, ZHOU Jun-hu, ZHOU Zhi-jun, ZHANG Yan-wei, LIU Jian-zhong, CEN Ke-fa. Characteristics of NO chemisorption on surface of char[J]. J China Coal Soc, 2013,38(9):1651-1655.  

    16. [16]

      ZHAO Peng-fei, GUO Xin, ZHENG Chu-guang. Investigating the mechanism of elemental mercury binding on activated carbon and chlorine-embedded activated carbon[J]. Proc CSEE, 2010,30(23):40-44.  

    17. [17]

      ZHONG Jun, GAO Zheng-yang, DING Yi, YU Yue-xi, YANG Wei-jie. Heterogeneous reduction reaction of N2O by char based on Zigzag carbonaceous model[J]. J China Coal Soc, 2017,42(11):3028-3034.  

    18. [18]

      ZHU Heng-yi, SUN Bao-min, XIN Jing, YIN Shu-jian, XIAO Hai-ping. Quantum chemistry research on NO heterogeneous reduction by char with the participation of CO under oxy-fuel combustion atmosphere[J]. J China Coal Soc, 2015,40(7):1641-1647.  

    19. [19]

      ZHANG H, LIU J X, SHEN J, JIANG X M. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82:312-321.  

    20. [20]

      NING Hua, LIU Song, DENG Nian-jin, LI Guang-xu, LAN Zhi-qiang. Nitrogen adsorption on Nb(100) surface by using First-principles investigation[J]. J Guangxi Univ-Sci(NSE), 2013,3:769-776.  

    21. [21]

      LI Shu-ping, MENG Jiang, WANG Ji-gang. Parallel adsorption for NO on the surfaces of Ben (n=2-12) clusters[J]. J At Mol Phys, 2019,36(2):240-245.  

    22. [22]

      CHEN N, YANG R T. Ab initio molecular orbital calculation on graphite:Selection of molecular system and model chemistry[J]. Carbon, 1998,36(7):1061-1070.  

    23. [23]

      ZHANG X X, XIE M, WU H X, LV X X, ZHOU Z J. DFT study of the effect of Ca on NO heterogeneous reduction by char[J]. Fuel, 2020,265.  

    24. [24]

      OYARZúN A M, RADOVIC L R, KYOTANI T. An update on the mechanism of the graphene-NO reaction[J]. Carbon, 2015,86:58-68.  

    25. [25]

      GONZÁLEZ J D, MONDRAGÓN F, ESPINAL J F. Effect of calcium on gasification of carbonaceous materials with CO2:A DFT study[J]. Fuel, 2013,114:199-205.  

    26. [26]

      ZHAO D, LIU H, SUN C L, XU L F, CAO Q X. DFT study of the catalytic effect of Na on the gasification of carbon-CO2[J]. Combust Flame, 2018,197:471-486.  

    27. [27]

      LIU R. Adsorption and dissociation of H2O on Au(111) surface:A DFT study[J]. Comput Theor Chem, 2013,1019:141-145.  

    28. [28]

      GAO Z Y, LV S K, YANG W J, YANG P F, MENG X X. Quantum chemistry investigation on the reaction mechanism of the elemental mercury, chlorine, bromine and ozone system[J]. J Mol Model, 2015,21(6)2707.  

    29. [29]

      ZHANG Xiu-xia. Nitrogen conversion mechanism during char combustion and develepment of low NOx technology[D]. Hangzhou: Zhejiang University, 2012. 

    30. [30]

      YI Qiu-ming, LIU Hua-cai, YIN Xiu-li, WU Chuang-zhi. Comparative investigation of the CO2 gasification characteristics of biomass In-situ char and Ex-situ char[J]. J Circ Syst, 2015,3:9-16.  

  • 加载中
    1. [1]

      Feng Zheng Ruxun Yuan Xiaogang Wang . “Research-Oriented” Comprehensive Experimental Design in Polymer Chemistry: the Case of Polyimide Aerogels. University Chemistry, 2024, 39(10): 210-218. doi: 10.12461/PKU.DXHX202404027

    2. [2]

      Yaping Li Sai An Aiqing Cao Shilong Li Ming Lei . The Application of Molecular Simulation Software in Structural Chemistry Education: First-Principles Calculation of NiFe Layered Double Hydroxide. University Chemistry, 2025, 40(3): 160-170. doi: 10.12461/PKU.DXHX202405185

    3. [3]

      Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029

    4. [4]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    5. [5]

      Yiying Yang Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074

    6. [6]

      Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093

    7. [7]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    8. [8]

      Pingping Zhu Yongjun Xie Yuanping Yi Yu Huang Qiang Zhou Shiyan Xiao Haiyang Yang Pingsheng He . Excavation and Extraction of Ideological and Political Elements for the Virtual Simulation Experiments at Molecular Level: Taking the Project “the Simulation and Computation of Conformation, Morphology and Dimensions of Polymer Chains” as an Example. University Chemistry, 2024, 39(2): 83-88. doi: 10.3866/PKU.DXHX202309063

    9. [9]

      Jinfu Ma Hui Lu Jiandong Wu Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052

    10. [10]

      Yeyun Zhang Ling Fan Yanmei Wang Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044

    11. [11]

      Xuzhen Wang Xinkui Wang Dongxu Tian Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074

    12. [12]

      Dexin Tan Limin Liang Baoyi Lv Huiwen Guan Haicheng Chen Yanli Wang . Exploring Reverse Teaching Practices in Physical Chemistry Experiment Courses: A Case Study on Chemical Reaction Kinetics. University Chemistry, 2024, 39(11): 79-86. doi: 10.12461/PKU.DXHX202403048

    13. [13]

      Jiajie Cai Chang Cheng Bowen Liu Jianjun Zhang Chuanjia Jiang Bei Cheng . CdS/DBTSO-BDTO S型异质结光催化制氢及其电荷转移动力学. Acta Physico-Chimica Sinica, 2025, 41(8): 100084-. doi: 10.1016/j.actphy.2025.100084

    14. [14]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    15. [15]

      Yue Wu Jun Li Bo Zhang Yan Yang Haibo Li Xian-Xi Zhang . Research on Kinetic and Thermodynamic Transformations of Organic-Inorganic Hybrid Materials for Fluorescent Anti-Counterfeiting Application information: Introducing a Comprehensive Chemistry Experiment. University Chemistry, 2024, 39(6): 390-399. doi: 10.3866/PKU.DXHX202403028

    16. [16]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    17. [17]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    18. [18]

      Zhifang SUZongjie GUANYu FANG . Process of electrocatalytic synthesis of small molecule substances by porous framework materials. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2373-2395. doi: 10.11862/CJIC.20240290

    19. [19]

      You Wu Chang Cheng Kezhen Qi Bei Cheng Jianjun Zhang Jiaguo Yu Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027

    20. [20]

      Yan Li Xinze Wang Xue Yao Shouyun Yu . 基于激发态手性铜催化的烯烃EZ异构的动力学拆分——推荐一个本科生综合化学实验. University Chemistry, 2024, 39(5): 1-10. doi: 10.3866/PKU.DXHX202309053

Metrics
  • PDF Downloads(5)
  • Abstract views(948)
  • HTML views(101)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return