Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene
- Corresponding author: BO Long-li, bolongli@xauat.edu.cn
Citation:
NING Ke, BO Long-li, LIU Shuang, ZHANG Ting-ting, ZHANG Dan-qing, ZHANG Ji-bin, CHEN Jin. Loading strategy for the active components of monolithic catalyst and its influences on the microwave enhanced catalytic combustion of toluene[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(9): 1140-1152.
ZHANG X M, XUE Z G, LI H, YAN L, YANG Y, WANG Y, DUAN J C, LI L, CHAI F H, CHENG M M, ZHANG W Q. Ambient volatile organic compounds pollution in China[J]. J Environ Sci, 2017,55(5):69-75.
CHEN K Y, ZHU L Z, YANG K. Tricrystalline TiO2 with enhanced photocatalytic activity and durability for removing volatile organic compounds from indoor air[J]. J Environ Sci, 2015,32(6):189-195.
BARI M A, KINDZIERSKI W B. Ambient volatile organic compounds (VOCs) in Calgary, Alberta:Sources and screening health risk assessment[J]. Sci Total Environ, 2018,631-632(8):627-640.
DUMANOGLU Y, KARA M, ALTIOK H, ODABASI M, ELBIR T, BAYRAM A. Spatial and seasonal variation and source apportionment of volatile organic compounds (VOCs) in a heavily industrialized region[J]. Atmos Environ, 2014,98(12):168-178.
WEN Ze. The"13th Five-Year-Plan"for pollution prevention and control was issued by Chinese government to limit high-emission projects such as petrochemical industry in heavily polluted areas[J]. Shanghai Chem Ind, 2017,42(11)3.
SHI Xu-rong. Effect evaluation and countermeasure study on volatile organic compounds emission control in Baoshan district, shanghai[D]. Urumchi: Xinjiang University, 2019.
HUANG Qing-bin. Research progress in catalytic oxidation technology and catalysts for volatile organic compounds[J]. Chem Reagents, 2019,41(2):107-112.
BO Long-li, LIU Hai-nan, WANG Xiao-hui, ZHANG Hao, SUN Jian-yu, YANG Li. Study on the catalytic oxidation of toluene under different heating modes[J]. Environ Chem, 2013,32(8):1524-1531.
ZHANG Yu-cai, BO Long-li, WANG Xiao-hui, LIU Hai-nan, ZHANG Hao. Study on catalytic oxidation of benzene by microwave heating[J]. Environ Sci, 2012,33(8):2759-2765.
BO Long-li, YANG Li, SUN Jian-yu, LIANG Xin-xin, HU Xue-jiao, MENG Hai-long. Catalytic oxidation of two-component VOCs and kinetic analysis[J]. Environ Sci, 2014,35(9):3302-3308.
LIU Hai-nan. Preparation of titania composite catalyst and its performance in microwave-assisted catalytic oxidation of toluene[D]. Xi'an: Xi'an University of Architecture and Technology, 2013.
LIAO Jian-bo. Study on the performance of microwave-assisted catalytic oxidation of volatile organic compound[D]. Xi'an: Xi'an University of Architecture and Technology, 2011.
SHI Zhi-ming, LIANG Kai-ming, GU Shou-ren. Effects of elements-doping on the crystal structure and thermal expansion coefficient of cordierite[J]. Adv Ceram, 2000,21(2):18-23.
ZHAI Y Q, XIONG J M, LI C Q, XU X, LUO G H. Influence of preparation method on performance of a metal supported perovskite catalyst for combustion of methane[J]. J Rare Earth, 2010,28(1):54-58. doi: 10.1016/S1002-0721(09)60050-8
LU Yan-bin, MA Biao, ZHANG Wei-chen. Preparation of HZSM-5/monolithic catalyst and its application in conversion of methanol to gasoline[J]. J Liaoning Shihua Univ, 2015,35(1):12-15.
TAO Ming. Synthesis of TS-1/cordierite monolith catalyst and its catalytic performance of phenol hydroxylation[D]. Hangzhou: Zhejiang University of Technology, 2016.
HUANG Hai-feng, ZHOU Xiao-yan, LU Han-feng, YU He, CHEN Yin-fei. Monolithic Mn/Ti-Si/cordierite catalyst prepared by In-situ deposition for SCR-DeNOx[J]. Proc CSEE, 2011,31(17):50-54.
SONG Wan-cang. Preparation of Al2O3 coating on stainless steel substrate[D]. Liaoning: Dalian University of Technology, 2010.
CHEN Chun-bo, LI Ping, SUI Zhi-jun, WANG Yin, ZHU Lian-li, HE Chong-heng. Preparation of cordierite honeycomb coating with large surface area and high adhesive capacity[J]. Ind Catal, 2010,18(3):40-45.
HE Zhen-fu, SHAO Qian, SHEN Ning-yuan. Influence of pretreatment on structure of catalytic washcoat[J]. Acta Pet Sin(Pet Proc Sect), 2001,17(3):83-85.
LIU Hai-nan, BO Long-li, WANG Xiao-hui, ZHANG Hao, SUN Jian-yu, YANG Li, CAI Li-dong. Preparation of titania composite catalyst and its performance in microwave-assisted catalytic oxidation of toluene[J]. Acta Sci Circum, 2013,33(6):1720-1727.
LI Kai. Coating technology and the performance of Mn-Ce/TiO2/CC honeycomb catalysts for NO removal[D]. Taiyuan: Taiyuan University of Technology, 2013.
BO L L, SUN S Y. Microwave-assisted catalytic oxidation of gaseous toluene with a Cu-Mn-Ce/cordierite honeycomb catalyst[J]. Front Chem Sci Eng, 2019,13(2):385-392.
SALKER A V, WEISWEILER W. Catalytic behaviour of metal based ZSM-5 catalysts for NOx reduction with NH3 in dry and humid conditions[J]. Appl Catal A:Gen, 2000,203(2):221-229. doi: 10.1016/S0926-860X(00)00489-0
HE Li-na, BO Long-li, DU Lin, NING Ke, LIU Jia-dong. Microwave catalytic combustion of gaseous toluene and distribution of bed temperature[J]. China Environ Sci, 2019,39(8):3242-3248.
DONG Liang. Study on preparation and hydrodesulfurization properties of phosphide monolithic catalysts[D]. Beijing: Beijing University of Chemical Technology, 2009.
MA Wen-jiao, HUANG Qiong, CHEN Ying-wen, ZHU She-min, SHEN Shu-bao. Catalytic performance of Fe-Mn-O mixed oxides supported on cordierite for toluene catalytic combustion[J]. Mod Chem Ind, 2012,32(3):26-29.
ZHANG Feng. Study on the performance of sulfur tolerance and regeneration and preparation of the monolithic catalyst for SCR denitration[D]. Hangzhou: Zhejiang University of Technology, 2010.
XUE Hong-dan. Study on preparation and properties of catalysts used for selective catalytic reduction of NOx[D]. Harbin: Harbin Engineering University, 2006.
MENG Hai-long, BO Long-li, LIU Jia-dong, GAO Bo, FENG Qi-qi, TAN Na, XIE Shuai. CoCuMnOx Photocatalyzed oxidation of multi-component VOCs and kinetic analysis[J]. Environ Sci, 2016,37(5):1670-1676.
WANG D, ZAHNG L, LI J H, KAMASAMUDRAM K, EPLING W. NH3-SCR over Cu/SAPO-34-Zeolite acidity and Cu structure changes as a function of Cu loading[J]. Catal Today, 2014,231(1):64-74.
HU Y T, LV Z H, WEI C, YU S C, LIU M H, GAO C J. Separation and antifouling properties of hydrolyzed PAN hybrid membranes prepared via in-situ sol-gel SiO2 nanoparticles growth[J]. J Membrane Sci, 2018,545(1):250-258.
YANGA Li, BO Long-li, SUN Jian-yu, LIANG Xin-xin, HU Xue-jiao, MENG Hai-long. Microwave assisted catalytic oxidation of two-component toluene, chlorobenzene and relative removal mechanism[J]. Chin J Environ Eng, 2014,8(11):4871-4879.
WU D F, ZHANG Y H, LI Y D. Mechanical stability of monolithic catalysts:scattering of washcoat connection and failure mechanism of active material[J]. Ind Eng Chem Res, 2013,52(41):14713-14721. doi: 10.1021/ie402546q
Krijn P. de Jong. Synthesis of Solid Catalysts[M]. Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA, 2009.
ZHOU Ming. Connection mechanism of the coatings and selection of the connection accelerants[J]. Mod Paint Finish, 2007,10(8):1-3.
ZAMARO J M, ULLA M A, MIRÓ E E. Zeolite washcoating onto cordierite honeycomb reactors for environmental applications[J]. Chem Eng J, 2005,106(1):25-33.
KONG D Y, YANG H, WEI S, LI D Y, WANG J B. Gel-casting without de-airing process using silica sol as a binder[J]. Ceram Int, 2007,33(2):133-139. doi: 10.1016/j.ceramint.2005.08.006
JIN Bin. Silica sol and its application in fire protection technology[J]. Fire Sci Technol, 1989(2):35-36.
Yufang GAO , Nan HOU , Yaning LIANG , Ning LI , Yanting ZHANG , Zelong LI , Xiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036
Fei ZHOU , Xiaolin JIA . Co3O4/TiO2 composite photocatalyst: Preparation and synergistic degradation performance of toluene. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2232-2240. doi: 10.11862/CJIC.20240236
Xinyuan Shi , Chenyangjiang , Changyu Zhai , Xuemei Lu , Jia Li , Zhu Mao . Preparation and Photoelectric Performance Characterization of Perovskite CsPbBr3 Thin Films. University Chemistry, 2024, 39(6): 383-389. doi: 10.3866/PKU.DXHX202312019
Yongming Guo , Jie Li , Chaoyong Liu . Green Improvement and Educational Design in the Synthesis and Characterization of Silver Nanoparticles. University Chemistry, 2024, 39(3): 258-265. doi: 10.3866/PKU.DXHX202309057
Yixuan Gao , Lingxing Zan , Wenlin Zhang , Qingbo Wei . Comprehensive Innovation Experiment: Preparation and Characterization of Carbon-based Perovskite Solar Cells. University Chemistry, 2024, 39(4): 178-183. doi: 10.3866/PKU.DXHX202311091
Xueting Cao , Shuangshuang Cha , Ming Gong . 电催化反应中的界面双电层:理论、表征与应用. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-. doi: 10.1016/j.actphy.2024.100041
Jiapei Zou , Junyang Zhang , Xuming Wu , Cong Wei , Simin Fang , Yuxi Wang . A Comprehensive Experiment Based on Electrocatalytic Nitrate Reduction into Ammonia: Synthesis, Characterization, Performance Exploration, and Applicable Design of Copper-based Catalysts. University Chemistry, 2024, 39(6): 373-382. doi: 10.3866/PKU.DXHX202312081
Linjie ZHU , Xufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416
Yingqi BAI , Hua ZHAO , Huipeng LI , Xinran REN , Jun LI . Perovskite LaCoO3/g-C3N4 heterojunction: Construction and photocatalytic degradation properties. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 480-490. doi: 10.11862/CJIC.20240259
Guangming YIN , Huaiyao WANG , Jianhua ZHENG , Xinyue DONG , Jian LI , Yi'nan SUN , Yiming GAO , Bingbing WANG . Preparation and photocatalytic degradation performance of Ag/protonated g-C3N4 nanorod materials. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1491-1500. doi: 10.11862/CJIC.20240086
Qilu DU , Li ZHAO , Peng NIE , Bo XU . Synthesis and characterization of osmium-germyl complexes stabilized by triphenyl ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1088-1094. doi: 10.11862/CJIC.20240006
Haiyu Nie , Chenhui Zhang , Fengpei Du . Ideological and Political Design for the Preparation, Characterization and Particle Size Control Experiment of Nanoemulsion. University Chemistry, 2024, 39(2): 41-46. doi: 10.3866/PKU.DXHX202306055
Yukai Jiang , Yihan Wang , Yunkai Zhang , Yunping Wei , Ying Ma , Na Du . Characterization and Phase Diagram of Surfactant Lyotropic Liquid Crystal. University Chemistry, 2024, 39(4): 114-118. doi: 10.3866/PKU.DXHX202309033
Lei Shu , Zhengqing Hao , Kai Yan , Hong Wang , Lihua Zhu , Fang Chen , Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134
Keweiyang Zhang , Zihan Fan , Liyuan Xiao , Haitao Long , Jing Jing . Unveiling Crystal Field Theory: Preparation, Characterization, and Performance Assessment of Nickel Macrocyclic Complexes. University Chemistry, 2024, 39(5): 163-171. doi: 10.3866/PKU.DXHX202310084
Yongjie ZHANG , Bintong HUANG , Yueming ZHAI . Research progress of formation mechanism and characterization techniques of protein corona on the surface of nanoparticles. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2318-2334. doi: 10.11862/CJIC.20240247
Yuena Yu , Fang Fang . Microwave-Assisted Synthesis of Safinamide Methanesulfonate. University Chemistry, 2024, 39(11): 210-216. doi: 10.3866/PKU.DXHX202401076
Xiaohui Li , Ze Zhang , Jingyi Cui , Juanjuan Yin . Advanced Exploration and Practice of Teaching in the Experimental Course of Chemical Engineering Thermodynamics under the “High Order, Innovative, and Challenging” Framework. University Chemistry, 2024, 39(7): 368-376. doi: 10.3866/PKU.DXHX202311027
Fei Liu , Dong-Yang Zhao , Kai Sun , Ting-Ting Yu , Xin Wang . Comprehensive Experimental Design for Photochemical Synthesis, Analysis, and Characterization of Seleno-Containing Medium-Sized N-Heterocycles. University Chemistry, 2024, 39(3): 369-375. doi: 10.3866/PKU.DXHX202309047
Zunyuan Xie , Lijin Yang , Zixiao Wan , Xiaoyu Liu , Yushan He . Exploration of the Preparation and Characterization of Nano Barium Titanate and Its Application in Inorganic Chemistry Laboratory Teaching. University Chemistry, 2024, 39(4): 62-69. doi: 10.3866/PKU.DXHX202310137
1: air compressor; 2: silica gel column; 3: activated carbon column; 4: flowmeter; 5: syringe pump; 6: evaporation flask; 7: explosion-proof zeolite; 8: electric furnace; 9: buffer bottle; 10: inlet sampling point; 11: gas chromatograph; 12: microwave device; 13: water-cooling system; 14: K-type thermocouple; 15: fixed bed reactor; 16: outlet sampling point; 17: organic solvent bottle; 18: alkaline solution bottle
G1: control group; G2: ultrasonic vibration; G3: 5%HNO3; G4: 10% HNO3; G5: 15% HNO3; G6: 30% HNO3; G7: 20%H2C2O4; G8: 30% H2C2O4; G9: 40% H2C2O4; G10: 27%NH3·H2O; G11: 10%HCl; G12: 0.5 mol/L NaOH
k1=0; k2=0.0500; k3=0.0750; k4=0.1000; k5=0.1063; k6=0.1125; k7=0.1188; k8=0.1250; k9=0.1500; msilica sol/mwater absorption refer to the mass ratio of silica sol to water absorption amount of the carrier
a: New/Cu-Mn-Ce(silica sol)/CH catalyst; b: New/Cu-Mn-Ce/CH catalyst; c: CH carrier(acid etching); d: Old/Cu-Mn-Ce(silica sol)/CH catalyst; e: Old/Cu-Mn-Ce/CH catalyst
a: New/Cu-Mn-Ce/CH catalyst; b: New/Cu-Mn-Ce(silica sol)/CH catalyst
■: CH carrier (acid etching); ●: Cu-Mn-Ce(silica sol)/CH catalyst; ▲:Cu-Mn-Ce/CH catalyst reaction conditions:P=200 W, bed height 100 mm, catalyst volume 6.15×10-5 m3
■: Cu-Mn-Ce/CH catalyst; ●: Cu-Mn-Ce(silica sol)/CH catalyst reaction conditions: toluene initial concentration 1000 mg/m3, air flow rate 0.12 m3/h, catalyst volume 6.15×10-5 m3, bed height 100 mm, bed temperature 300 ℃, Cu-Mn-Ce/CH catalyst:Pheating=100 W, Pinsulation=75 W; Cu-Mn-Ce (silica sol)/CH catalyst: Pheating=250 W, Pinsulation=150 W
■: 150 ℃(Pheating=100 W, Pinsulation=75 W); □: 200 ℃(Pheating=100 W, Pinsulation=87 W); ▲: 250 ℃(Pheating=200 W, Pinsulation=105 W); △: 300 ℃(Pheating=250 W, Pinsulation=150 W); ●: 350 ℃(Pheating=250 W, Pinsulation=220 W); ○: 400 ℃(Pheating=300 W, Pinsulation=275 W)
■: mineralization rate of toluene over the Cu-Mn-Ce(silica sol)/CH catalyst; □: mineralization rate of toluene over the Cu-Mn-Ce/CH catalyst; ●: Cu-Mn-Ce(silica sol)/CH catalyst activity; ○: Cu-Mn-Ce/CH catalyst activity reaction conditions: toluene concentration 1000 mg/m3, air flow rate 0.12 m3/h, catalystvolume 6.15×10-5 m3, bed height 100 mm, bed temperature 350 ℃, Pheating=250 W, Pinsulation=220 W
■: toluene removal rate; ●: active components shedding rate reaction conditions: toluene concentration 1000 mg/m3, air flow rate 0.12 m3/h, catalyst volume 6.15×10-5 m3, bed height 100 mm, temperature 350 ℃, Cu-Mn-Ce/CH catalyst: Pheating=150 W, Pinsulation=123 W; Cu-Mn-Ce(silica sol)/CH catalyst: Pheating=250 W, Pinsulation=220 W