Citation: LEI Zhao, JIANG Jing, ZHU Gang-li, ZHAO Zhi-gang, LING Qiang, CUI Ping. Investigation on the reactivity of isopropanol with lignite-related model compound[J]. Journal of Fuel Chemistry and Technology, ;2016, 44(1): 7-14. shu

Investigation on the reactivity of isopropanol with lignite-related model compound

  • Corresponding author: CUI Ping, mhgcp@126.com
  • Received Date: 12 August 2015
    Revised Date: 17 November 2015

    Fund Project: The project was supported by the National Natural Science Foundation of China 21176002The project was supported by the National Natural Science Foundation of China 21476001

Figures(12)

  • The isopropanolysis of lignite model compound was investigated using the density functional theory method. Firstly, thermodynamic properties were estimated. Secondly, the method combined the Hirshfeld population and the Fukui function was proposed to obtain the initial reactant configuration. Thirdly, the Linear Synchronous Transit method combined with the Quadratic Synchronous Transit method was developed to calculate the reaction pathway and simultaneously optimize the structures of reactant and product. It was observed that the calculated enthalpy was decreased with increasing temperature. Furthermore, the nucleophilic group was discovered. Moreover, it was proved that the isopropanol was the most active among the common alcohols, indicating that the isopropanolysis was exothermic and nucleophilic.
  • 加载中
    1. [1]

      CHATTERJEE K K. Uses of energy, minerals and changing techniques[M]. New Age International (P) Ltd, 2006.

    2. [2]

      LI K Z, ZONG M Z, YAN L H. Alkanolysis simulation of lignite-related model compounds using density functional theory[J]. Fuel, 2014,120:158-162. doi: 10.1016/j.fuel.2013.12.009

    3. [3]

      KUZNETSOV N P, SHARYPOV I V, RUBAYLO I A. Study of Kansk-Atchinsk lignite liquefaction in lower aliphatic alcohols using flow periodical function[J]. Fuel, 1988,67(12):1685-1690. doi: 10.1016/0016-2361(88)90217-7

    4. [4]

      KUZNETSOV N P, SHARYPOV I V, BEREGOVTSOVA N G. Kinetics and isotope effect of brown coal liquefaction in ethanol[J]. React Kinet Catal Lett, 1989,40(1):59-64. doi: 10.1007/BF02235139

    5. [5]

      ROSS S D, BLESSING J E. Alcohols as H-donor media in coal conversion. 2. Base-promoted H-donation to coal by methyl alcohol[J]. Fuel, 1979,58(6):438-442. doi: 10.1016/0016-2361(79)90085-1

    6. [6]

      LEI Z, LIU M, SHUI H. Study on the liquefaction of Shengli lignite with NaOH/methanol[J]. Fuel Process Technol, 2010,91(7):783-788. doi: 10.1016/j.fuproc.2010.02.014

    7. [7]

      KUZNETSOV P N, SHARYPOV V I, BEREGOVTSOVA N G. Properties of Kansk-Atchinsk lignite during liquefaction in lower alcohols[J]. Fuel, 1990,69(7):911-916. doi: 10.1016/0016-2361(90)90241-H

    8. [8]

      MONDRAGON F, ITOH H, OUCHI K. Solubility increase of coal by alkylation with various alcohols[J]. Fuel, 1982,61(11):1131-1134. doi: 10.1016/0016-2361(82)90198-3

    9. [9]

      LU H Y, WEI X Y, YU R. Sequential thermal dissolution of huolinguole lignite in methanol and ethanol[J]. Energy Fuels, 2011,25(6):2741-2745. doi: 10.1021/ef101734f

    10. [10]

      ZIEGLER T, AUTSCHBACH J. Theoretical methods of potential use for studies of inorganic reaction mechanisms[J]. Chem Rev, 2005,105(6):2695-2722. doi: 10.1021/cr0307188

    11. [11]

      GRIMME S. Calculation of frequency dependent optical rotation using density functional response theory[J]. Chem Phys Lett, 2001,339(5/6):380-388.  

    12. [12]

      IE Y, HIROSE T, NAKAMURA H. Nature of electron transport by pyridine-based tripodal anchors: Potential for robust and conductive single-molecule junctions with gold electrodes[J]. J Am Chem Soc, 2011,133(9):3014-3022. doi: 10.1021/ja109577f

    13. [13]

      GORELSKY S I, LEVER A B P. Electronic structure and spectra of ruthenium diimine complexes by density functional theory and INDO/S. Comparison of the two methods[J]. J Organomet Chem, 2011,635(1/2):187-196.  

    14. [14]

      GEERLINGS P, AYERS P W, TORO-LABBÉ A. The woodward-offmann rules reinterpreted by conceptual density functional theory[J]. Acc Chem Res, 2012,45(5):683-695. doi: 10.1021/ar200192t

    15. [15]

      JIANG Z, PAN Q, LI M. Density functional theory study on direct catalytic decomposition of ammonia on Pd (111) surface[J]. Appl Surf Sci, 2013,292:494-499.  

    16. [16]

      HUANG J, LIU C, REN L, TONG H, LI W, WU D. Studies on pyrolysis mechanism of syringol as lignin model compound by quantum chemistry[J]. J Fuel Chem Technol, 2013,41(6):657-666. doi: 10.1016/S1872-5813(13)60031-6

    17. [17]

      ZHANG X, GAO H, XU H. A density functional theory study of the hydrolysis mechanism of phosphodiester catalyzed by a mononuclear Zn (Ⅱ) complex[J]. J Mol Catal A: Chem, 2012,368-369:53-60.  

    18. [18]

      SHIM J G., KIM J H, JHON Y H. DFT calculations on the role of base in the reaction between CO2 and monoethanolamine[J]. Ind Eng Chem Res, 2009,48(4):2172-2178. doi: 10.1021/ie800684a

    19. [19]

      AZIZPOUR H, SOTUDEH-GHAREBAGH R, MOSTOUFI N. Characterization of regime transition in fluidized beds at high velocities by analysis of vibration signals[J]. Ind Eng Chem Res, 2012,51(7):2855-2863. doi: 10.1021/ie200863y

    20. [20]

      WANG W J, CAO Y Y. Theoretical study of ethanol partial oxidation for syngas production under cold plasma conditions[J]. J Energy Inst, 2014,87(2):89-95. doi: 10.1016/j.joei.2014.03.026

    21. [21]

      KYUNGBOOK L, HOONYOUNG J, SEUNGPIL J, JONGGEUN C. Improvement of ensemble smoother with clustered covariance for channelized reservoirs[J]. Energy Explor Exploit, 2013,31(5):713-726. doi: 10.1260/0144-5987.31.5.713

    22. [22]

      NAJAFI M, MOOD K H, ZAHEDI M. DFT/B3LYP study of the substituent effect on the reaction enthalpies of the individual steps of single electron transfer-proton transfer and sequential proton loss electron transfer mechanisms of chroman derivatives antioxidant action[J]. Comput Theor Chem, 2011,969(1/3):1-12.  

    23. [23]

      WANG H, SHI X, CHE D. Thermodynamic optimization of the operating parameters for a combined power cycle utilizing low-temperature waste heat and LNG cold energy[J]. Appl Therm Eng, 2013,59(1/2):490-497.  

    24. [24]

      ZHOU J, ZONG Z M, CHEN B. The Enrichment and identification of methyl alkanones from thermally soluble shengli lignite[J]. Energy Source Part A, 2013,35(23):2218-2224. doi: 10.1080/15567036.2011.652759

    25. [25]

      PICCOLO A, SPACCINI R, NIEDER R. Sequestration of a biologically labile organic carbon in soils by humified organic matter[J]. Clim Change, 2004,67(2):329-343.  

    26. [26]

      ADLER E. Lignin chemistry-past, present and future[J]. Wood Sci Technol, 1977,11(3):169-218. doi: 10.1007/BF00365615

    27. [27]

      YU L C, WEI X Y, WANG Y H. Catalytic hydroconversion of extraction residue from Shengli lignite over Fe-S/ZSM-5[J]. Fuel Process Technol, 2014,126:131-137. doi: 10.1016/j.fuproc.2014.04.032

    28. [28]

      JUG K. A new definition of atomic charges in molecules[J]. Theor Chem Acta, 1973,31(1):63-73. doi: 10.1007/BF00527439

    29. [29]

      XU X, WANG Y, CHEN Z, BAI L, ZHANG K, YANG S, ZHANG S. Influence of cooling treatments on char microstructure and reactivity of Shengli brown coal[J]. J Fuel Chem Technol, 2015,43(1):1-8. doi: 10.1016/S1872-5813(15)60005-6

    30. [30]

      LUNDBERG M, BOROWSKI T. Oxoferryl species in mononuclear non-heme iron enzymes: Biosynthesis, properties and reactivity from a theoretical perspective[J]. Coord Chem Rev, 2012,257(1):277-289.  

    31. [31]

      GECE G, BILGIC S. Molecular-level understanding of the inhibition efficiency of some inhibitors of zinc corrosion by quantum chemical approach[J]. Ind Eng Chem Res, 2012,51(43):14115-14120. doi: 10.1021/ie302324b

  • 加载中
    1. [1]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    2. [2]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    3. [3]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    4. [4]

      Xu HuangKai-Yin WuChao SuLei YangBei-Bei Xiao . Metal-organic framework Cu-BTC for overall water splitting: A density functional theory study. Chinese Chemical Letters, 2025, 36(4): 109720-. doi: 10.1016/j.cclet.2024.109720

    5. [5]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    6. [6]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    7. [7]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    8. [8]

      Yan GuoHongtao BianLe YuJiani MaYu Fang . Photochemical reaction mechanism of benzophenone protected guanosine at N7 position. Chinese Chemical Letters, 2025, 36(3): 109971-. doi: 10.1016/j.cclet.2024.109971

    9. [9]

      Haixia WuKailu Guo . Sulfur reduction reaction mechanism elucidated with in situ Raman spectroscopy. Chinese Chemical Letters, 2025, 36(6): 110654-. doi: 10.1016/j.cclet.2024.110654

    10. [10]

      Xin LiWanting FuRuiqing GuanYue YuanQinmei ZhongGang YaoSheng-Tao YangLiandong JingSong Bai . Nucleophiles promotes the decomposition of electrophilic functional groups of tetracycline in ZVI/H2O2 system: Efficiency and mechanism. Chinese Chemical Letters, 2024, 35(10): 109625-. doi: 10.1016/j.cclet.2024.109625

    11. [11]

      Jianmei HanPeng WangHua ZhangNing SongXuguang AnBaojuan XiShenglin Xiong . Performance optimization of chalcogenide catalytic materials in lithium-sulfur batteries: Structural and electronic engineering. Chinese Chemical Letters, 2024, 35(7): 109543-. doi: 10.1016/j.cclet.2024.109543

    12. [12]

      Yihu Ke Shuai Wang Fei Jin Guangbo Liu Zhiliang Jin Noritatsu Tsubaki . Charge transfer optimization: Role of Cu-graphdiyne/NiCoMoO4 S-scheme heterojunction and Ohmic junction. Chinese Journal of Structural Chemistry, 2024, 43(12): 100458-100458. doi: 10.1016/j.cjsc.2024.100458

    13. [13]

      Chuyuan Lin Hui Lin Lingxing Zeng . Optimization strategy for rechargeable Zn metal batteries over wide-pH aqueous electrolytes. Chinese Journal of Structural Chemistry, 2025, 44(1): 100407-100407. doi: 10.1016/j.cjsc.2024.100407

    14. [14]

      Shilong LiMing ZhaoYefei XuZhanyi LiuMian LiQing HuangXiang Wu . Performance optimization of aqueous Zn/MnO2 batteries through the synergistic effect of PVP intercalation and GO coating. Chinese Chemical Letters, 2025, 36(3): 110701-. doi: 10.1016/j.cclet.2024.110701

    15. [15]

      Hao-Fei NiJia-He LinGele TeriQiang-Qiang JiaPei-Zhi HuangHai-Feng LuChang-Feng WangZhi-Xu ZhangDa-Wei FuYi Zhang . B-site ion regulation strategy enables performance optimization and multifunctional integration of hybrid perovskite ferroelectrics. Chinese Chemical Letters, 2025, 36(3): 109690-. doi: 10.1016/j.cclet.2024.109690

    16. [16]

      Huixin ChenChen ZhaoHongjun YueGuiming ZhongXiang HanLiang YinDing Chen . Unraveling the reaction mechanism of high reversible capacity CuP2/C anode with native oxidation POx component for sodium-ion batteries. Chinese Chemical Letters, 2025, 36(1): 109650-. doi: 10.1016/j.cclet.2024.109650

    17. [17]

      Bharathi Natarajan Palanisamy Kannan Longhua Guo . Metallic nanoparticles for visual sensing: Design, mechanism, and application. Chinese Journal of Structural Chemistry, 2024, 43(9): 100349-100349. doi: 10.1016/j.cjsc.2024.100349

    18. [18]

      Bowen SongChenxu ShiYinghao QuHongjun LiuHui YangXiaoming WuXijun Liu . The electrical properties and charge transport mechanism of MXenes. Chinese Chemical Letters, 2025, 36(6): 110823-. doi: 10.1016/j.cclet.2025.110823

    19. [19]

      Yuan DongMutian MaZhenyang JiaoSheng HanLikun XiongZhao DengYang Peng . Effect of electrolyte cation-mediated mechanism on electrocatalytic carbon dioxide reduction. Chinese Chemical Letters, 2024, 35(7): 109049-. doi: 10.1016/j.cclet.2023.109049

    20. [20]

      Hongxia LiXiyang WangDu QiaoJiahao LiWeiping ZhuHonglin Li . Mechanism of nanoparticle aggregation in gas-liquid microfluidic mixing. Chinese Chemical Letters, 2024, 35(4): 108747-. doi: 10.1016/j.cclet.2023.108747

Metrics
  • PDF Downloads(1)
  • Abstract views(709)
  • HTML views(112)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return