Reaction mechanism of arsenic and nitrous oxides during coal combustion
- Corresponding author: ZOU Chan, hbdlzch@163.com
Citation:
ZOU Chan, WANG Chun-bo, XING Jia-ying. Reaction mechanism of arsenic and nitrous oxides during coal combustion[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(2): 138-143.
LI Wen-xiu, WANG Bao-feng, REN Jie, ZHANG Kai, YANG Feng-ling, CHENG Fang-qin. Effect of mineral matter on emissions of SO2 and NOx during combustion of lean coal in O2/CO2 atmosphere[J]. J Fuel Chem Technol, 2017,45(10):1200-1208. doi: 10.3969/j.issn.0253-2409.2017.10.007
WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion:Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust, 2018,68:1-28. doi: 10.1016/j.pecs.2018.04.001
LIU H, PAN W, WANG C, ZHANG Y. Volatilization of arsenic during coal combustion based on isothermal thermogravimetric analysis at 600-1500℃[J]. Energy Fuels, 2016,30(8):6790-6798. doi: 10.1021/acs.energyfuels.6b00816
LIU H, WANG C, ZOU C, ZHANG Y, WANG J. Simultaneous volatilization characteristics of arsenic and sulfur during isothermal coal combustion[J]. Fuel, 2017,203:152-161. doi: 10.1016/j.fuel.2017.04.101
TANG Q, LIU G J, ZHOU C C, SUN R Y. Distribution of trace elements in feed coal and combustion residues from two coal-fired power plants at Huainan, Anhui, China[J]. Fuel, 2013,107:315-322. doi: 10.1016/j.fuel.2013.01.009
ZHAO Y, ZHANG J, HUANG W, WANG Z, LI Y, SONG D, ZHAO F, ZHENG C. Arsenic emission during combustion of high arsenic coals from Southwestern Guizhou, China[J]. Energy Convers Manage, 2008,49(4):615-624. doi: 10.1016/j.enconman.2007.07.044
ZIELINSKI R A, FOSTER A L, MEEKER G P, BROWNFIELD I K. Mode of occurrence of arsenic in feed coal and its derivative fly ash, Black Warrior Basin, Alabama[J]. Fuel, 2007,86(4):560-572. doi: 10.1016/j.fuel.2006.07.033
CONTRERAS M L, AROSTEGUI J M, ARMESTO L. Arsenic interactions during co-combustion processes based on thermodynamic equilibrium calculations[J]. Fuel, 2009,88:539-546. doi: 10.1016/j.fuel.2008.09.028
LIU Ying-hui, ZHENG Chu-guang, YOU Xiao-qing, GUO Xin. Interaction between most volatile toxic trace elements during coal combustion[J]. J Combust Sci Technol, 2001,7(4):243-247. doi: 10.3321/j.issn:1006-8740.2001.04.007
URBAN D R, WILCOX J. A theoretical study of properties and reactions involving arsenic and selenium compounds present in coal combustion flue gases[J]. J Phys Chem A, 2006,110(17):5847-5852. doi: 10.1021/jp055564+
MONAHAN-PENDERGAST M, PRZYBYLEK M, LINDBLAD M, WILCOX J. Theoretical predictions of arsenic and selenium species under atmospheric conditions[J]. Atmos Environ, 2008,42(10):2349-2357. doi: 10.1016/j.atmosenv.2007.12.028
URBAN D R, WILCOX J. Theoretical study of the kinetics of the reactions Se + O2 → Se + O and As + HCl → AsCl + H[J]. J Phys Chem A, 2006,110(28):8797-8801. doi: 10.1021/jp0628986
LEI Ming, HUANG Xing-zhi, WANG Chun-bo. NO emission characteristics of typical coals under O2/CO2/H2O atmosphere at intermediate and high temperatures[J]. J Chin Soc Power Eng, 2017,37(6):432-439.
WANG Chun-bo, YUE Shuang, XU Xu-bin, LI Yi-peng. NOx release of char in constant temperature combustion under O2/CO2 atmosphere[J]. J China Coal Soc, 2018,43(1):257-264.
XIAO Hai-ping, ZHOU Jun-hu, LIU Jian-zhong, SUN Bao-ming, YE Li-ping. Effect mechanism of existence pattern of sulphur on reduction of NO[J]. J Fuel Chem Technol, 2008,36(3):381-384. doi: 10.3969/j.issn.0253-2409.2008.03.024
LIU Jing, ZHENG Chu-guang, QIU Jian-rong. Study on quantum chemistry calculation method of mercury reactions in combustion flue gas[J]. J Eng Thermophys, 2007,28(3):519-522. doi: 10.3321/j.issn:0253-231X.2007.03.050
AWUAHA J B, DZADE N Y, TIA R, ADEI E, KWAKYE-AWUAHAD B, CATLOW C R A, DE LEEUW N H. A density functional theory study of arsenic immobilization by the Al(iii)-modified zeolite clinoptilolite[J]. Phys Chem Chem Phys, 2016,18(16):11297-11305. doi: 10.1039/C6CP00190D
FRISCH M J, TRUCKS G W, SCHLEGEL H B. Gaussian 09, Revision D.01[J]. Gaussian, Inc., Wallingford, CT, 2009.
ZHANG H, LIU J, SHEN J, JIANG X. Thermodynamic and kinetic evaluation of the reaction between NO (nitric oxide) and char(N) (char bound nitrogen) in coal combustion[J]. Energy, 2015,82(C):312-321.
SCHRÖDER B, SEBALD P, STEIN C, WESER O, BOTSCHWINA P. Challenging high-level ab initio rovibrational spectroscopy:The nitrous oxide molecule[J]. Z Phys Chem, 2015,229(10/12):1663-1690.
BORISENKO K B, KOLONITS M, ROZSONDAI B, HARGITTAI I. Electron diffraction study of the nitrogen dioxide molecular structure at 294, 480, and 691 K[J]. J Mol Struct, 1997,413-414:121-131. doi: 10.1016/S0022-2860(96)09588-9
MARSDEN C J, SMITH B J. AB initio force constants:A cautionary tale concerning nitrogen oxides[J]. J Mol Struct:Theochem, 1989,187:337-357. doi: 10.1016/0166-1280(89)85174-7
EVENSON K M, WELLS J S, RADFORD H E. Infrared resonance of OH with the H2O laser:A galactic maser pump?[J]. Phys Rev Lett, 1970,25(4):199-202. doi: 10.1103/PhysRevLett.25.199
MIZUSHIMA M. Molecular parameters of OH free radical[J]. Phys Rev A, 1972,5(1):143-157. doi: 10.1103/PhysRevA.5.143
WANG Peng-qian, WANG Chang-an, DU Yong-bo, ZHANG Long-fei, CHE De-fu. Experimental investigation on the NO2 reduction property under O2/CO2 combustion condition[J]. J Xi'an Jiaotong Univ, 2017,51(5):16-22.
JIAO A, ZHANG H, LIU J, SHEN J, JIANG X. The role of CO played in the nitric oxide heterogeneous reduction:A quantum chemistry study[J]. Energy, 2017,141:1538-1546. doi: 10.1016/j.energy.2017.11.115
Jie ZHAO , Huili ZHANG , Xiaoqing LU , Zhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
Kaifu Zhang , Shan Gao , Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045
Jie ZHAO , Sen LIU , Qikang YIN , Xiaoqing LU , Zhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385
Heng Zhang . Determination of All Rate Constants in the Enzyme Catalyzed Reactions Based on Michaelis-Menten Mechanism. University Chemistry, 2024, 39(4): 395-400. doi: 10.3866/PKU.DXHX202310047
Zhiwen HU , Ping LI , Yulong YANG , Weixia DONG , Qifu BAO . Morphology effects on the piezocatalytic performance of BaTiO3. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 339-348. doi: 10.11862/CJIC.20240172
Xiaochen Zhang , Fei Yu , Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026
Weina Wang , Lixia Feng , Fengyi Liu , Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022
Yaling Chen . Basic Theory and Competitive Exam Analysis of Dynamic Isotope Effect. University Chemistry, 2024, 39(8): 403-410. doi: 10.3866/PKU.DXHX202311093
Meifeng Zhu , Jin Cheng , Kai Huang , Cheng Lian , Shouhong Xu , Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166
Yiying Yang , Dongju Zhang . Elucidating the Concepts of Thermodynamic Control and Kinetic Control in Chemical Reactions through Theoretical Chemistry Calculations: A Computational Chemistry Experiment on the Diels-Alder Reaction. University Chemistry, 2024, 39(3): 327-335. doi: 10.3866/PKU.DXHX202309074
Jing JIN , Zhuming GUO , Zhiyin XIAO , Xiujuan JIANG , Yi HE , Xiaoming LIU . Tuning the stability and cytotoxicity of fac-[Fe(CO)3I3]- anion by its counter ions: From aminiums to inorganic cations. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 991-1004. doi: 10.11862/CJIC.20230458
You Wu , Chang Cheng , Kezhen Qi , Bei Cheng , Jianjun Zhang , Jiaguo Yu , Liuyang Zhang . ZnO/D-A共轭聚合物S型异质结高效光催化产H2O2及其电荷转移动力学研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2406027-. doi: 10.3866/PKU.WHXB202406027
Shule Liu . Application of SPC/E Water Model in Molecular Dynamics Teaching Experiments. University Chemistry, 2024, 39(4): 338-342. doi: 10.3866/PKU.DXHX202310029
Jiayu Gu , Siqi Wang , Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012
Jinfu Ma , Hui Lu , Jiandong Wu , Zhongli Zou . Teaching Design of Electrochemical Principles Course Based on “Cognitive Laws”: Kinetics of Electron Transfer Steps. University Chemistry, 2024, 39(3): 174-177. doi: 10.3866/PKU.DXHX202309052
Yeyun Zhang , Ling Fan , Yanmei Wang , Zhenfeng Shang . Development and Application of Kinetic Reaction Flasks in Physical Chemistry Experimental Teaching. University Chemistry, 2024, 39(4): 100-106. doi: 10.3866/PKU.DXHX202308044
Maitri Bhattacharjee , Rekha Boruah Smriti , R. N. Dutta Purkayastha , Waldemar Maniukiewicz , Shubhamoy Chowdhury , Debasish Maiti , Tamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007
Zhengkun QIN , Zicong PAN , Hui TIAN , Wanyi ZHANG , Mingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429
Xuzhen Wang , Xinkui Wang , Dongxu Tian , Wei Liu . Enhancing the Comprehensive Quality and Innovation Abilities of Graduate Students through a “Student-Centered, Dual Integration and Dual Drive” Teaching Model: A Case Study in the Course of Chemical Reaction Kinetics. University Chemistry, 2024, 39(6): 160-165. doi: 10.3866/PKU.DXHX202401074