Citation: GAO Xiu-juan, WANG Wen-feng, GU Ying-ying, ZHANG Zhen-zhou, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Performance of SO42-/AC catalysts prepared with different precursors in the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1114-1121. shu

Performance of SO42-/AC catalysts prepared with different precursors in the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation

  • Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
  • Received Date: 11 April 2017
    Revised Date: 26 June 2017

    Fund Project: the National Natural Science Foundation of China 20903114This work was financially supported by the National Natural Science Foundation of China (21373253, 20903114) and Youth Innovation Promotion Association CAS (2014155)the National Natural Science Foundation of China 21373253Youth Innovation Promotion Association 2014155

Figures(5)

  • A series of SO42-/AC bifunctional catalysts, in which SO42- and AC acted as the acid sites and redox sites, respectively, are prepared by impregnation with H2SO4 and (NH4)2SO4 as precursors and active carbon as support; their catalytic performance in the direct oxidation of dimethyl ether (DME) to polyoxymethylene dimethyl ethers (DMMx) was investigated. The results show that the catalytic performance of SO42-/AC catalysts is significantly related to the precursor used. Over the 40%H2SO4/AC catalyst, the selectivity to DMM1-2 reaches 59.7%, with a DME conversion of 8.4%; in addition, there is no COx observed in the products. However, a large amount of COx by-product is formed over the 40%(NH4)2SO4/AC catalyst; meanwhile, the selectivity to DMM is only 2.7% and no DMM2 is formed. The XRD, N2 sorption, NH3-TPD and O2-TPD-MS characterization results illustrate that the suitable amount of weak acid sites and redox sites of the H2SO4/AC catalyst is beneficial to the formation of long chain DMMx from DME oxidation. The modification of AC with SO42- promotes the activation of O2 over the surface of AC support, whereas the introduction of H2SO4 improves the weak acid sites of the catalyst. On the contrary, the number of medium-strong acid sites of the catalyst is increased by modifying AC with (NH4)2SO4.
  • 加载中
    1. [1]

      BURGER J, SIEGERT M, STRÖFER E, HASSE H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts[J]. Fuel, 2010,89(11):3315-3319. doi: 10.1016/j.fuel.2010.05.014

    2. [2]

      ZHAO Q, WANG H, QIN Z F, WU Z W, FAN W B, WANG J G. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. J Fuel Chem Tech, 2011,39(12):918-923. doi: 10.1016/S1872-5813(12)60003-6

    3. [3]

      Wu J B, Zhu H Q, Wu Z W, Qin Z F, Yan L, Du B L, Fan W B, Wang J G. High Si/Al ratio HZSM-5 zeolite:an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chem, 2015,17(4):2353-2357. doi: 10.1039/C4GC02510E

    4. [4]

      LI Feng, JIANG Yuan-li, LI Wu-cheng, WEI Ling-chao, YAN Jie, SHANG Ru-jing, DING Jian-chu, JIA Jin-cai, ZHANG Xiu-quan, XU Cai-hua, XU Liu, WANG Zhan-xiu. The synthesis method of polyoxymethylene dimethyl ethers from methanol and formaldehyde. CN:102320941A[P]. 2012-01-18.

    5. [5]

      HAGEN G P, SPANGLER M J. Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxidation of methanol. US:6166266[P]. 2000-12-26.

    6. [6]

      LIU Jing-song, YU Peng, SHI Chang-zhi, RONG Jun-feng, WANG Jin. The process for the production of polyoxymethylene dimethyl ethers from methanol by gas phase method. CN:102030621A[P]. 2011-04-27.

    7. [7]

      XIA Chun-gu, SONG He-yuan, CHEN Jing, LI Zhen. Preparation of polyoxymethylene dimethyl ethers by acetalization reaction of formaldehyde with methanol. CN:102249868A[P]. 2011-11-23.

    8. [8]

      SHI Min-hao. Synthesis of polyoxymethylene dimethyl ethers as diesel fuel additives from methanol and formaldehyde[D]. Shanghai:East China University of Science and Technology, 2012:32-42.

    9. [9]

      YANG Li-xin, XU Hong-yan. Production technology and application prospect of dimethyl ether[J]. Chem Ind Eng Prog, 2003,22(2):204-207.  

    10. [10]

      LIU H C, PATRICIA C, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003,217(1):222-232.

    11. [11]

      YAGITA H, ASAMI K, MURAMATSU A. Oxidative dimerization of dimethyl ether with solid catalyst[J]. Appl Catal, 1989,53(1):L5-L9. doi: 10.1016/S0166-9834(00)80002-0

    12. [12]

      HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic Study of Selective Oxidation of Dimethyl Ether to Formaldehyde over Alumina-supported Molybdenum Oxide Catalyst[J]. Catal Lett, 2006,108(1/2):79-86.  

    13. [13]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015,17(2):1057-1064. doi: 10.1039/C4GC01591F

    14. [14]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013,15(6):1501-1504. doi: 10.1039/c3gc40279g

    15. [15]

      ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol, 2016,6(9):2975-2983. doi: 10.1039/C5CY01569C

    16. [16]

      LIU H C, PATRICIA C, IGLESIA E. Effects of Al2O3 support modification on MoOx and VOx catalysts for dimethyl ether oxidation to formaldehyde[J]. Phys Chem Chem Phys, 2003,5(17):3795-3800. doi: 10.1039/b302776g

    17. [17]

      LIU H C, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 Keggin Structures[J]. J Phys Chem B, 2003,107(39):10840-10847. doi: 10.1021/jp0301554

    18. [18]

      ZHANG Q D, TAN Y S, YANG C H, LIU Y Q, HAN Y Z. Catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2-H4SiW12O40/SiO2 catalyst[J]. Chinese J Catal, 2006,27(10):916-920. doi: 10.1016/S1872-2067(06)60048-X

    19. [19]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z, SHAMOTO J, TSUBAKI N. Catalytic oxidation of dimethyl ether to dimethoxymethane over Cs modified H3PW12O40/SiO2 catalysts[J]. J Nat Gas Chem, 2007,16(3):322-325. doi: 10.1016/S1003-9953(07)60066-8

    20. [20]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z. Effect of different Mn salt precursors on Mn-H4SiW12O40/SiO2 used for dimethoxymethane synthesis from dimethyl ether oxidation[J]. J Fuel Chem Technol, 2007,35(2):206-210. doi: 10.1016/S1872-5813(07)60017-6

    21. [21]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z. MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane[J]. J Mol Catal A:Chem, 2007,263(1/2):149-155.

    22. [22]

      ZHANG Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem, 2014,16(11):4708-4715. doi: 10.1039/C4GC01373E

    23. [23]

      FU T, LI Z. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chem Eng Sci, 2015,135(2):3-20.

    24. [24]

      LI J Y, MA L, LI X N, LU C S, LIU H Z. Effect of Nitric Acid Pretreatment on the Properties of Activated Carbon and Supported Palladium Catalysts[J]. Ind Eng Chem Res, 2005,44(15):5478-5482. doi: 10.1021/ie0488896

    25. [25]

      SHEN W Z, LI Z J, LIU Y H. Surface chemical functional groups modification of porous carbon[J]. Recent Patents Chem Eng, 2008,1(1):27-40. doi: 10.2174/2211334710801010027

    26. [26]

      ZHANG Q D, WANG W F, ZHANG Z Z, ZHANG J F, BAI Y X, TSUBAKI N, HAN Y Z, TAN Y S. Application of modified CNTs with Ti(SO4)2 in selective oxidation of dimethyl ether[J]. Catal Sci Technol, 2016,6(19):7193-7202. doi: 10.1039/C6CY01367H

    27. [27]

      JUNG S M, GRANGE P. Characterization and reactivity of pure TiO2-SO42- SCR catalyst:influence of SO42- content[J]. Catal Today, 2000,59(3/4):305-312.

    28. [28]

      ROPERO-VEGA J L, ALDANA-PÉREZ A, GÓMEZ R, NI~NO-GÓMEZ M E. Sulfated titania[TiO2/SO42-]:A very active solid acid catalyst for the esterification of free fatty acids with ethanol[J]. Appl Catal A:Gen, 2010,379(1/2):24-29.

  • 加载中
    1. [1]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    4. [4]

      Jiaxin Su Jiaqi Zhang Shuming Chai Yankun Wang Sibo Wang Yuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-. doi: 10.3866/PKU.WHXB202408012

    5. [5]

      Jiaxuan Zuo Kun Zhang Jing Wang Xifei Li . 锂离子电池Ni-Co-Mn基正极材料前驱体的形核调控及机制. Acta Physico-Chimica Sinica, 2025, 41(1): 2404042-. doi: 10.3866/PKU.WHXB202404042

    6. [6]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    7. [7]

      Zhuoyan Lv Yangming Ding Leilei Kang Lin Li Xiao Yan Liu Aiqin Wang Tao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 100038-. doi: 10.3866/PKU.WHXB202408015

    8. [8]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    9. [9]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    10. [10]

      Zhiquan Zhang Baker Rhimi Zheyang Liu Min Zhou Guowei Deng Wei Wei Liang Mao Huaming Li Zhifeng Jiang . Insights into the Development of Copper-based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-. doi: 10.3866/PKU.WHXB202406029

    11. [11]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    12. [12]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    13. [13]

      Yonghui ZHOURujun HUANGDongchao YAOAiwei ZHANGYuhang SUNZhujun CHENBaisong ZHUYouxuan ZHENG . Synthesis and photoelectric properties of fluorescence materials with electron donor-acceptor structures based on quinoxaline and pyridinopyrazine, carbazole, and diphenylamine derivatives. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 701-712. doi: 10.11862/CJIC.20230373

    14. [14]

      Caixia Lin Zhaojiang Shi Yi Yu Jianfeng Yan Keyin Ye Yaofeng Yuan . Ideological and Political Design for the Electrochemical Synthesis of Benzoxathiazine Dioxide Experiment. University Chemistry, 2024, 39(2): 61-66. doi: 10.3866/PKU.DXHX202309005

    15. [15]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    16. [16]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    17. [17]

      Chengqian Mao Yanghan Chen Haotong Bai Junru Huang Junpeng Zhuang . Photodimerization of Styrylpyridinium Salt and Its Application in Silk Screen Printing. University Chemistry, 2024, 39(5): 354-362. doi: 10.3866/PKU.DXHX202312014

    18. [18]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    19. [19]

      Wei HEJing XITianpei HENa CHENQuan YUAN . Application of solar-driven inorganic semiconductor-microbe hybrids in carbon dioxide fixation and biomanufacturing. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 35-44. doi: 10.11862/CJIC.20240364

    20. [20]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

Metrics
  • PDF Downloads(0)
  • Abstract views(783)
  • HTML views(113)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return