Citation: GAO Xiu-juan, WANG Wen-feng, GU Ying-ying, ZHANG Zhen-zhou, ZHANG Qing-de, HAN Yi-zhuo, TAN Yi-sheng. Performance of SO42-/AC catalysts prepared with different precursors in the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(9): 1114-1121. shu

Performance of SO42-/AC catalysts prepared with different precursors in the synthesis of polyoxymethylene dimethyl ethers from dimethyl ether direct oxidation

  • Corresponding author: ZHANG Qing-de, qdzhang@sxicc.ac.cn
  • Received Date: 11 April 2017
    Revised Date: 26 June 2017

    Fund Project: the National Natural Science Foundation of China 20903114This work was financially supported by the National Natural Science Foundation of China (21373253, 20903114) and Youth Innovation Promotion Association CAS (2014155)the National Natural Science Foundation of China 21373253Youth Innovation Promotion Association 2014155

Figures(5)

  • A series of SO42-/AC bifunctional catalysts, in which SO42- and AC acted as the acid sites and redox sites, respectively, are prepared by impregnation with H2SO4 and (NH4)2SO4 as precursors and active carbon as support; their catalytic performance in the direct oxidation of dimethyl ether (DME) to polyoxymethylene dimethyl ethers (DMMx) was investigated. The results show that the catalytic performance of SO42-/AC catalysts is significantly related to the precursor used. Over the 40%H2SO4/AC catalyst, the selectivity to DMM1-2 reaches 59.7%, with a DME conversion of 8.4%; in addition, there is no COx observed in the products. However, a large amount of COx by-product is formed over the 40%(NH4)2SO4/AC catalyst; meanwhile, the selectivity to DMM is only 2.7% and no DMM2 is formed. The XRD, N2 sorption, NH3-TPD and O2-TPD-MS characterization results illustrate that the suitable amount of weak acid sites and redox sites of the H2SO4/AC catalyst is beneficial to the formation of long chain DMMx from DME oxidation. The modification of AC with SO42- promotes the activation of O2 over the surface of AC support, whereas the introduction of H2SO4 improves the weak acid sites of the catalyst. On the contrary, the number of medium-strong acid sites of the catalyst is increased by modifying AC with (NH4)2SO4.
  • 加载中
    1. [1]

      BURGER J, SIEGERT M, STRÖFER E, HASSE H. Poly(oxymethylene) dimethyl ethers as components of tailored diesel fuel:Properties, synthesis and purification concepts[J]. Fuel, 2010,89(11):3315-3319. doi: 10.1016/j.fuel.2010.05.014

    2. [2]

      ZHAO Q, WANG H, QIN Z F, WU Z W, FAN W B, WANG J G. Synthesis of polyoxymethylene dimethyl ethers from methanol and trioxymethylene with molecular sieves as catalysts[J]. J Fuel Chem Tech, 2011,39(12):918-923. doi: 10.1016/S1872-5813(12)60003-6

    3. [3]

      Wu J B, Zhu H Q, Wu Z W, Qin Z F, Yan L, Du B L, Fan W B, Wang J G. High Si/Al ratio HZSM-5 zeolite:an efficient catalyst for the synthesis of polyoxymethylene dimethyl ethers from dimethoxymethane and trioxymethylene[J]. Green Chem, 2015,17(4):2353-2357. doi: 10.1039/C4GC02510E

    4. [4]

      LI Feng, JIANG Yuan-li, LI Wu-cheng, WEI Ling-chao, YAN Jie, SHANG Ru-jing, DING Jian-chu, JIA Jin-cai, ZHANG Xiu-quan, XU Cai-hua, XU Liu, WANG Zhan-xiu. The synthesis method of polyoxymethylene dimethyl ethers from methanol and formaldehyde. CN:102320941A[P]. 2012-01-18.

    5. [5]

      HAGEN G P, SPANGLER M J. Preparation of polyoxymethylene dimethyl ethers by catalytic conversion of dimethyl ether with formaldehyde formed by oxidation of methanol. US:6166266[P]. 2000-12-26.

    6. [6]

      LIU Jing-song, YU Peng, SHI Chang-zhi, RONG Jun-feng, WANG Jin. The process for the production of polyoxymethylene dimethyl ethers from methanol by gas phase method. CN:102030621A[P]. 2011-04-27.

    7. [7]

      XIA Chun-gu, SONG He-yuan, CHEN Jing, LI Zhen. Preparation of polyoxymethylene dimethyl ethers by acetalization reaction of formaldehyde with methanol. CN:102249868A[P]. 2011-11-23.

    8. [8]

      SHI Min-hao. Synthesis of polyoxymethylene dimethyl ethers as diesel fuel additives from methanol and formaldehyde[D]. Shanghai:East China University of Science and Technology, 2012:32-42.

    9. [9]

      YANG Li-xin, XU Hong-yan. Production technology and application prospect of dimethyl ether[J]. Chem Ind Eng Prog, 2003,22(2):204-207.  

    10. [10]

      LIU H C, PATRICIA C, IGLESIA E. Structure and support effects on the selective oxidation of dimethyl ether to formaldehyde catalyzed by MoOx domains[J]. J Catal, 2003,217(1):222-232.

    11. [11]

      YAGITA H, ASAMI K, MURAMATSU A. Oxidative dimerization of dimethyl ether with solid catalyst[J]. Appl Catal, 1989,53(1):L5-L9. doi: 10.1016/S0166-9834(00)80002-0

    12. [12]

      HUANG X M, LIU J L, CHEN J L, XU Y D, SHEN W J. Mechanistic Study of Selective Oxidation of Dimethyl Ether to Formaldehyde over Alumina-supported Molybdenum Oxide Catalyst[J]. Catal Lett, 2006,108(1/2):79-86.  

    13. [13]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Effects of the MoO3 structure of Mo-Sn catalysts on dimethyl ether oxidation to methyl formate under mild conditions[J]. Green Chem, 2015,17(2):1057-1064. doi: 10.1039/C4GC01591F

    14. [14]

      LIU G B, ZHANG Q D, HAN Y Z, TSUBAKI N, TAN Y S. Selective oxidation of dimethyl ether to methyl formate over trifunctional MoO3-SnO2 catalyst under mild conditions[J]. Green Chem, 2013,15(6):1501-1504. doi: 10.1039/c3gc40279g

    15. [15]

      ZHANG Z Z, ZHANG Q D, JIA L Y, WANG W F, ZHANG T, HAN Y Z, TSUBAKI N, TAN Y S. Effects of tetrahedral molybdenum oxide species and MoOx domains on the selective oxidation of dimethyl ether under mild conditions[J]. Catal Sci Technol, 2016,6(9):2975-2983. doi: 10.1039/C5CY01569C

    16. [16]

      LIU H C, PATRICIA C, IGLESIA E. Effects of Al2O3 support modification on MoOx and VOx catalysts for dimethyl ether oxidation to formaldehyde[J]. Phys Chem Chem Phys, 2003,5(17):3795-3800. doi: 10.1039/b302776g

    17. [17]

      LIU H C, IGLESIA E. Selective one-step synthesis of dimethoxymethane via methanol or dimethyl ether oxidation on H3+nVnMo12-nPO40 Keggin Structures[J]. J Phys Chem B, 2003,107(39):10840-10847. doi: 10.1021/jp0301554

    18. [18]

      ZHANG Q D, TAN Y S, YANG C H, LIU Y Q, HAN Y Z. Catalytic oxidation of dimethyl ether to dimethoxymethane over MnCl2-H4SiW12O40/SiO2 catalyst[J]. Chinese J Catal, 2006,27(10):916-920. doi: 10.1016/S1872-2067(06)60048-X

    19. [19]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z, SHAMOTO J, TSUBAKI N. Catalytic oxidation of dimethyl ether to dimethoxymethane over Cs modified H3PW12O40/SiO2 catalysts[J]. J Nat Gas Chem, 2007,16(3):322-325. doi: 10.1016/S1003-9953(07)60066-8

    20. [20]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z. Effect of different Mn salt precursors on Mn-H4SiW12O40/SiO2 used for dimethoxymethane synthesis from dimethyl ether oxidation[J]. J Fuel Chem Technol, 2007,35(2):206-210. doi: 10.1016/S1872-5813(07)60017-6

    21. [21]

      ZHANG Q D, TAN Y S, YANG C H, HAN Y Z. MnCl2 modified H4SiW12O40/SiO2 catalysts for catalytic oxidation of dimethy ether to dimethoxymethane[J]. J Mol Catal A:Chem, 2007,263(1/2):149-155.

    22. [22]

      ZHANG Q D, TAN Y S, LIU G B, ZHANG J F, HAN Y Z. Rhenium oxide-modified H3PW12O40/TiO2 catalysts for selective oxidation of dimethyl ether to dimethoxy dimethyl ether[J]. Green Chem, 2014,16(11):4708-4715. doi: 10.1039/C4GC01373E

    23. [23]

      FU T, LI Z. Review of recent development in Co-based catalysts supported on carbon materials for Fischer-Tropsch synthesis[J]. Chem Eng Sci, 2015,135(2):3-20.

    24. [24]

      LI J Y, MA L, LI X N, LU C S, LIU H Z. Effect of Nitric Acid Pretreatment on the Properties of Activated Carbon and Supported Palladium Catalysts[J]. Ind Eng Chem Res, 2005,44(15):5478-5482. doi: 10.1021/ie0488896

    25. [25]

      SHEN W Z, LI Z J, LIU Y H. Surface chemical functional groups modification of porous carbon[J]. Recent Patents Chem Eng, 2008,1(1):27-40. doi: 10.2174/2211334710801010027

    26. [26]

      ZHANG Q D, WANG W F, ZHANG Z Z, ZHANG J F, BAI Y X, TSUBAKI N, HAN Y Z, TAN Y S. Application of modified CNTs with Ti(SO4)2 in selective oxidation of dimethyl ether[J]. Catal Sci Technol, 2016,6(19):7193-7202. doi: 10.1039/C6CY01367H

    27. [27]

      JUNG S M, GRANGE P. Characterization and reactivity of pure TiO2-SO42- SCR catalyst:influence of SO42- content[J]. Catal Today, 2000,59(3/4):305-312.

    28. [28]

      ROPERO-VEGA J L, ALDANA-PÉREZ A, GÓMEZ R, NI~NO-GÓMEZ M E. Sulfated titania[TiO2/SO42-]:A very active solid acid catalyst for the esterification of free fatty acids with ethanol[J]. Appl Catal A:Gen, 2010,379(1/2):24-29.

  • 加载中
    1. [1]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    2. [2]

      Min LIUHuapeng RUANZhongtao FENGXue DONGHaiyan CUIXinping WANG . Neutral boron-containing radical dimers. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 123-130. doi: 10.11862/CJIC.20240362

    3. [3]

      Jianding LIJunyang FENGHuimin RENGang LI . Proton conductive properties of a Hf(Ⅳ)-based metal-organic framework built by 2,5-dibromophenyl-4,6-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1094-1100. doi: 10.11862/CJIC.20240464

    4. [4]

      Xiaoyang Li Xiaowei Huang Yimeng Zhang Huan Liu Shao Jin Junpeng Zhuang . Comprehensive Chemical Experiments on the Synthesis of 1,3-Dibromo-5,5-Dimethylhydantoin and Its Application as a Brominating Reagent. University Chemistry, 2025, 40(7): 286-293. doi: 10.12461/PKU.DXHX202408035

    5. [5]

      Lifang HEWenjie TANGYaoze LUOMingsheng LIANGJianxin TANGYuxuan WUFuxing ZHANGXiaoming ZHU . Synthesis, structure, and anticancer activity of two dialkyltin complexes constructed based on 2, 2′-bipyridin-6, 6′-dicarboxylic acid. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1601-1609. doi: 10.11862/CJIC.20250012

    6. [6]

      Jiaxuan ZuoKun ZhangJing WangXifei Li . Nucleation Regulation and Mechanism of Precursors for Nickel Cobalt Manganese-based Cathode Materials in Lithium-Ion Batteries. Acta Physico-Chimica Sinica, 2025, 41(1): 100009-0. doi: 10.3866/PKU.WHXB202404042

    7. [7]

      Qiqi LiSu ZhangYuting JiangLinna ZhuNannan GuoJing ZhangYutong LiTong WeiZhuangjun Fan . Preparation of High Density Activated Carbon by Mechanical Compression of Precursors for Compact Capacitive Energy Storage. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-0. doi: 10.3866/PKU.WHXB202406009

    8. [8]

      Zhuoyan LvYangming DingLeilei KangLin LiXiao Yan LiuAiqin WangTao Zhang . Light-Enhanced Direct Epoxidation of Propylene by Molecular Oxygen over CuOx/TiO2 Catalyst. Acta Physico-Chimica Sinica, 2025, 41(4): 2408015-0. doi: 10.3866/PKU.WHXB202408015

    9. [9]

      Jiaxin SuJiaqi ZhangShuming ChaiYankun WangSibo WangYuanxing Fang . Optimizing Poly(heptazine imide) Photoanodes Using Binary Molten Salt Synthesis for Water Oxidation Reaction. Acta Physico-Chimica Sinica, 2024, 40(12): 2408012-0. doi: 10.3866/PKU.WHXB202408012

    10. [10]

      Renqing Lü Shutao Wang Fang Wang Guoping Shen . Computational Chemistry Aided Organic Chemistry Teaching: A Case of Comparison of Basicity and Stability of Diazine Isomers. University Chemistry, 2025, 40(3): 76-82. doi: 10.12461/PKU.DXHX202404119

    11. [11]

      Yufan ZHAOJinglin YOUShixiang WANGGuopeng LIUXiang XIAYingfang XIEMeiqin SHENGFeiyan XUKai TANGLiming LU . Raman spectroscopic quantitative study of the melt microstructure in binary Li2O-GeO2 functional crystals. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1533-1544. doi: 10.11862/CJIC.20250063

    12. [12]

      Yujia LITianyu WANGFuxue WANGChongchen WANG . Direct Z-scheme MIL-100(Fe)/BiOBr heterojunctions: Construction and photo-Fenton degradation for sulfamethoxazole. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 481-495. doi: 10.11862/CJIC.20230314

    13. [13]

      Liangzhen Hu Li Ni Ziyi Liu Xiaohui Zhang Bo Qin Yan Xiong . A Green Chemistry Experiment on Electrochemical Synthesis of Benzophenone. University Chemistry, 2024, 39(6): 350-356. doi: 10.3866/PKU.DXHX202312001

    14. [14]

      Jichao XUMing HUXichang CHENChunhui WANGLeichen WANGLingyi ZHOUXing HEXiamin CHENGSu JING . Construction and hydrogen peroxide-activated chemodynamic activity of ferrocene?benzoselenadiazole conjugate. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1495-1504. doi: 10.11862/CJIC.20250144

    15. [15]

      Shuangxi LiHuijun YuTianwei LanLiyi ShiDanhong ChengLupeng HanDengsong Zhang . NOx reduction against alkali poisoning over Ce(SO4)2-V2O5/TiO2 catalysts by constructing the Ce4+–SO42− pair sites. Chinese Chemical Letters, 2024, 35(5): 108240-. doi: 10.1016/j.cclet.2023.108240

    16. [16]

      Xiaoning TANGShu XIAJie LEIXingfu YANGQiuyang LUOJunnan LIUAn XUE . Fluorine-doped MnO2 with oxygen vacancy for stabilizing Zn-ion batteries. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1671-1678. doi: 10.11862/CJIC.20240149

    17. [17]

      Qiang ZhangYuanbiao HuangRong Cao . Imidazolium-Based Materials for CO2 Electroreduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2306040-0. doi: 10.3866/PKU.WHXB202306040

    18. [18]

      Yanhui GuoLi WeiZhonglin WenChaorong QiHuanfeng Jiang . Recent Progress on Conversion of Carbon Dioxide into Carbamates. Acta Physico-Chimica Sinica, 2024, 40(4): 2307004-0. doi: 10.3866/PKU.WHXB202307004

    19. [19]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    20. [20]

      Zhiquan ZhangBaker RhimiZheyang LiuMin ZhouGuowei DengWei WeiLiang MaoHuaming LiZhifeng Jiang . Insights into the Development of Copper-Based Photocatalysts for CO2 Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2406029-0. doi: 10.3866/PKU.WHXB202406029

Metrics
  • PDF Downloads(0)
  • Abstract views(822)
  • HTML views(117)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return