Citation: WEI Li-hong, CUI Bao-chong, CHEN Yong, YANG Tian-hua, GUO Liang-zhen. Occurrence of sodium in high alkali coal and its transformation during combustion[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(8): 897-906. shu

Occurrence of sodium in high alkali coal and its transformation during combustion

  • Corresponding author: WEI Li-hong, weilihong@sau.edu.cn
  • Received Date: 8 March 2019
    Revised Date: 2 May 2019

    Fund Project: the National Key Research and Development Project 2018YFB0604100The project was supported by the National Key Research and Development Project (2018YFB0604100)

Figures(9)

  • With the discovery of super-huge coalfields located in Xinjiang province, the features of large coal reserves, sodium-rich in coal and the problems of boiler fouling during coal thermal utilization are paid more and more widespread attention. Also, more comprehensive investigation on the characteristics of sodium volatilization and its influencing factors in the combustion can provide an important reference for the efficient and clean utilization of high alkali coal. Therefore, a review was made to collect and analyze the relevant data about sodium volatilization characteristics during high alkali coal combustion from published materials. It is found that the sodium species in most of high alkali coal is dominated by water-soluble sodium (WS-Na), excepting few coals with insoluble sodium (HIS-Na) as main sodium species, e.g. Shenhua Kuanggou coal and Houxia coal. The coal ontaining higher HIS-Na has higher hydrochloride-soluble sodium (AS-Na) and ammonium acetate-soluble sodium (HS-Na) contents. Four influence factors including chlorine content, ash composition and combustion temperature, sodium form and content, which affects the sodium migration and transformation, were compared. It is concluded that the temperature has the greatest influence on sodium volatilization. The volatilization of sodium can be significantly increased with the increase of temperature, and the evaporation rate of sodium will be accelerated after 900 ℃. For the sodium content in 2000-4000 μg/g, there is a well positive correlation between the volatilization amount and the total amount of sodium, but it is irrelevant to the soluble sodium content. Chlorine can promote the volatilization of sodium as the molar ratio of Na to Cl is less than 3.5, while it has an inhibition as the molar ratio of Na to Cl exceeds 10. Moreover, a significant negative correlation is observed between the amount of sodium volatilization and the molar ratio of Na to[(Si+Al)-(Ca+Mg)]. According to the existing research results, the migration and transformation behavior of sodium in coal combustion process is summarized into 3 stages consisting of internal conversion, external volatilization and conversion, as well as condensation, and 4 paths.
  • 加载中
    1. [1]

      XU J Y, YU D X, FAN B, ZENG X P, LV W Z, CHEN J. Characterization of ash particles from co-combustion with a Zhundong coal for understanding ash deposition behavior[J]. Energy Fuels, 2014,28(1):678-684.  

    2. [2]

      LI J, ZHUANG X G, XAVIER Q, ORIOL F, NATALIA M, ZHOU J B, LEI G M. High quality of jurassic coals in the southern and eastern junggar coalfields, Xinjiang, NW China:Geochemical and mineralogical characteristics[J]. Int J Coal Geol, 2012,99:1-15. doi: 10.1016/j.coal.2012.05.003

    3. [3]

      WANG X B, XU Z X, WEI B, ZHANG L, TAN H Z, YANG T, HRVOJE M, NEVEN D. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    4. [4]

      XING H, LIU H, Z X, DENG H, HU H, YAO H. Enhanced sodium adsorption capacity of kaolinite using a combined method of thermal pre-activation and intercalation-exfoliation:Alleviating the problems of slagging and fouling during the combustion of Zhundong coal[J]. Fuel, 2019,239:312-319. doi: 10.1016/j.fuel.2018.11.018

    5. [5]

      YANG Zhong-can, LUI Jia-li, YAO Wei. Fouling index of Zhundong coal ash[J]. Clean Coal Technol, 2013,19(2):81-84.  

    6. [6]

      CHANG Jia-xing, YANG Zhong-chan. Study on Zhundong Coal's ash fouling indicator to ensure safe operation of boilers[J]. Boiler Technol, 2013,44(6):17-19+59. doi: 10.3969/j.issn.1672-4763.2013.06.005

    7. [7]

      GUO R, YANG J, LIU D, LIU Z Y. Transformation behavior of trace elements during coal pyrolysis[J]. Fuel Process Technol, 2002,77(25):137-143.  

    8. [8]

      LI G D, LI S Q, HUANG Q, YAO Q. Fine particulate formation and ash deposition during pulverized coal combustion of high-sodium lignite in a down-fired furnace[J]. Fuel, 2015,143(44):430-437.  

    9. [9]

      DAI B, LOW F, GIROLAMO A D, WU X, ZHANG L. Characteristics of ash deposits in a pulverised lignite coal-fired boiler and the mass flow of major ash-forming inorganic elements[J]. Energy Fuels, 2013,27(10):6198-6211. doi: 10.1021/ef400930e

    10. [10]

      YANG T, KAI X, LI R, SUN Y, HE Y. The behavior of alkali metals during the co-combustion of straw and coal[J]. Energy Source Part A, 2014,36(1):15-22. doi: 10.1080/15567036.2011.629278

    11. [11]

      SONG G L, YANG S B, SONG W J, QI X B. Release and transformation behaviors of sodium during combustion of high alkali residual carbon[J]. Appl Therm Eng, 2017,122:285-296. doi: 10.1016/j.applthermaleng.2017.04.139

    12. [12]

      LIU Y Q, CHENG L M, ZHAO Y G, JI J Q, WANG Q H, LUO Z Y. Transformation behavior of alkali metals in high-alkali coals[J]. Fuel Process Technol, 2018,169:288-294. doi: 10.1016/j.fuproc.2017.09.013

    13. [13]

      LIU Jing, WANG Zhi-hua, XIANG Fei-peng, HUANG Zhen-yu, LIU Jian-zhong, ZHOU Jun-hu, CEN Ke-fa. Modes of occurrence and transformation of alkali metals in Zhundong coal during combustion[J]. J Fuel Chem Technol, 2014,42(3):316-322.  

    14. [14]

      WEI X F, HUANG J J, LIU T F, FANG Y T, WANG Y. Transformation of alkali metals during pyrolysis and gasification of a lignite[J]. Energy Fuels, 2008,22(3):1840-1844.  

    15. [15]

      BAI Xiang-fei, WANG Yue, DING Hua, ZHU Chuan, ZHANG Hong-yu. Modes of occurrence of sodium in Zhundong coal[J]. J China Coal Soc, 2015,40(12):2909-2915.  

    16. [16]

      BENSON S A, HOLM P L. Comparison of inorganics in three low-rank coals[J]. Ind Eng Chem Prod Res Dev, 1985,24(1):145-149. doi: 10.1021/i300017a027

    17. [17]

      JI Jie-qiang, CHENG Le-ming, LIU Yan-quan, WANG Qin-hui, LUO Zhong-yang. Chemical kinetics simulation on high-temperature morphology of alkali sodium in Zhundong coal[J]. Chin J Power Eng, 2017,37(10):13-20.  

    18. [18]

      QUYN D M, WU H W, BHATTACHARYA S P, LI C Z. Volatilisation and catalytic effects of alkali and alkaline earth metallic species during the pyrolysis and gasification of Victorian brown coal. Part Ⅱ. Effects of chemical form and valence[J]. Fuel, 2002,81(2):151-158.  

    19. [19]

      GLAZER M P, KHAN N A, JONG W D, SPLIETHOFF H, SCHüRMANN H, MONKHOUSE P. Alkali metals in circulating fluidized bed combustion of biomass and coal:Measurements and chemical equilibrium analysis[J]. Energy Fuels, 2005,19(5):1889-1897. doi: 10.1021/ef0500336

    20. [20]

      OLESCHKO H, SCHIMROSCZYK A, LIPPERT H, MÜLLER M. Influence of coal composition on the release of Na-, K-, Cl-, and S-species during the combustion of brown coal[J]. Fuel, 2007,86(15):2275-2282. doi: 10.1016/j.fuel.2007.01.030

    21. [21]

      OLESCHKO H, MÜLLER M. Influence of coal composition and operating conditions on the release of alkali species during combustion of hard coal[J]. Energy Fuels, 2007,21(6):3240-3248. doi: 10.1021/ef700400j

    22. [22]

      TAO Yu-jie, ZHANG Yan-wei, ZHOU Jun-hu, JING Xue-hui, LI Tao, LIU Jian-zhong, CEN Ke-fa. Mineral conversion regularity and release behavior of Na, Ca during Zhundong coal's combustion[J]. Proc CSEE, 2015,35(5):1169-1175.  

    23. [23]

      GOTTWALD U, MONKHOUSE P, BONN B J F. Dependence of alkali emissions in PFB combustion on coal composition[J]. Fuel, 2001,80(13):1893-1899. doi: 10.1016/S0016-2361(01)00045-X

    24. [24]

      YAO Xiang-yu, JIN Jing, ZHONG Cheng-peng, WANG Yong-zhen, GAO Shan-shan, ZHAO Qing-qing. Occurrence mode and volatilization characteristic of sodium in Zhundong coal[J]. Coal Convers, 2016,39(1):1-5. doi: 10.3969/j.issn.1004-4248.2016.01.001

    25. [25]

      LIU Yan-quan, CHENG Le-ming, JI Jie-qiang, ZHANG Wei-guo, WANG Qin-hui, ZHOU Qi, NIE Li. Distribution characteristics of alkali emission between gas and solid phase during Zhundong coal combustion[J]. J Fuel Chem Technol, 2016,44(3):314-320. doi: 10.3969/j.issn.0253-2409.2016.03.008 

    26. [26]

      BLÄSING M, MÜLLER M. Investigations on the influence of steam on the release of sodium, potassium, chlorine, and sulphur species during high temperature gasification of coal[J]. Fuel, 2012,94(1):137-143.  

    27. [27]

      GUO S, JIANG Y F, YU Z L, ZHAO J T, FANG Y T. Correlating the sodium release with coal compositions during combustion of sodium-rich coals[J]. Fuel, 2017,196:252-260. doi: 10.1016/j.fuel.2017.02.004

    28. [28]

      LIU Da-hai, ZHANG Shou-yu, TU Sheng-kang, JIN Tao, SHI Da-zhong, SHI Deng-yu, PEI Yu-feng. Transformation and release of sodium in Wucaiwan coal during combustion[J]. Chem Ind Eng Prog, 2015,34(3):705-709.  

    29. [29]

      LI G Y, WANG C A, YU Y, JIN X, LIU Y H, CHE D F. Release and transformation of sodium during combustion of Zhundong coals[J]. J Energy Inst, 2016,89(1):48-56.  

    30. [30]

      SONG Wei-jian. Study on the migration and transformation of alkali mental during the thermal conversion of high alkali mental coal[D]. Beijing: Institute of Engineering Thermophysics, Chinese Aeademy of Science, 2017.

    31. [31]

      YANG S B, SONG G L, NA Y J, SONG W J, QI X B. Transformation characteristics of Na and K in high alkali residual carbon during circulating fluidized bed combustion[J]. J Energy Inst, 2017,92(1):62-73.  

    32. [32]

      CHEN Chuan, ZHANG Shou-yu, LIU Da-hai, GUO Xi, DONG Ai-xia, XIONG Shao-wu, SHI Da-zhong, LV Jun-fu. Existence form of sodium in high sodium coals from Xinjiang and its effect on combustion process[J]. J Fuel Chem Technol, 2013,41(7):832-838. doi: 10.3969/j.issn.0253-2409.2013.07.008 

    33. [33]

      WENG Qing-song, WANG Chang-an, CHE De-fu, FU Zi-wen. Alkali metal occurrence mode and its influence on combustion characteristics in Zhundong coals[J]. J Combust Sci Technol, 2014,20(3):216-221.  

    34. [34]

      ZHU C, QU S J, ZHANG J, WANG Y, ZHANG Y H. Distribution, occurrence and leaching dynamic behavior of sodium in Zhundong coal[J]. Fuel, 2017,190:189-197. doi: 10.1016/j.fuel.2016.11.031

    35. [35]

      LIU Da-hai, ZHANG Shou-yu, CHEN Chuan, TU Sheng-kang, JIN Tao, ZHNEG Hong-jun, WU Qiao-mei, DENG Wen-xiang, TANG Wen-jiao, SHI Da-zhong, LÜ Jun-fu. Existence form of sodium in the high sodium coals from Xinjiang during its sodium removal process[J]. Int J Coal Sci Technol, 2014,39(12):2519-2524.  

    36. [36]

      WANG Zhi-hua, LI Qian, Liu Jing, HUANG Zhen-yu, ZHOU Zhi-jun, ZHOU Jun-hu, CEN Ke-fa. Occurrence of alkali metals in Zhundong Coal and its migration during pyrolysis process[J]. Proc CSEE, 2014,34(S1):130-135.  

    37. [37]

      FU Zi-wen, WANG Chang-an, WENG Qing-song, CHE De-fu. Experimental investigation for effect of water washing on Zhundong coal propertirs[J]. J Xi'an Jiaotong Univ, 2014,48(3):54-60.  

    38. [38]

      WANG C A, LIU Y H, JIN X, CHE D F. Effect of water washing on reactivities and NOx emission of Zhundong coals[J]. J Energy Inst, 2016,89(4):636-647. doi: 10.1016/j.joei.2015.06.002

    39. [39]

      GUO Shuai, JIANG Yun-feng, XIONG Qing-an, SONG Shuang-shuang, ZHAO Jian-tao, FANG Yi-tian. Release and transformation behaviors of sodium species with different occurrence modes during pyrolysis of Zhundong coal[J]. J Fuel Chem Technol, 2017,45(3):257-264. doi: 10.3969/j.issn.0253-2409.2017.03.001 

    40. [40]

      SONG W J, SONG G L, QI X B, LU Q G. Transformation characteristics of sodium in Zhundong coal under circulating fluidized bed gasification[J]. Fuel, 2016,182:660-667. doi: 10.1016/j.fuel.2016.06.021

    41. [41]

      QI X B, SONG G L, YANG S B, YANG Z, LYU Q G. Migration and transformation of sodium and chlorine in high-sodium high-chlorine Xinjiang lignite during circulating fluidized bed combustion[J]. J Energy Inst, 2019,92(3):673-681. doi: 10.1016/j.joei.2018.03.005

    42. [42]

      WANG X B, XU Z X, WEI B, ZHANG L, TAN H Z, YANG Y. The ash deposition mechanism in boilers burning Zhundong coal with high contents of sodium and calcium:A study from ash evaporating to condensing[J]. Appl Therm Eng, 2015,80:150-159. doi: 10.1016/j.applthermaleng.2015.01.051

    43. [43]

      SONG G L, SONG W J, QI X B, LU Q G. Transformation characteristics of sodium of Zhundong coal combustion/gasification in circulating fluidized bed[J]. Energy Fuels, 2016,30(4):3473-3478. doi: 10.1021/acs.energyfuels.6b00028

    44. [44]

      ZHANG Jun, HAN Cun-li, YAN Zheng, YU Gang, LIU Kun-lei, XU Yi-qian. Experimental studies on the behavior of coal in the initial stage of combution[J]. J Fuel Chem Technol, 2001,29(1):49-53. doi: 10.3969/j.issn.0253-2409.2001.01.010

    45. [45]

      ZHANG J, HAN C L, YAN Z, LIU K L, XU Y Q, SHENG C D. The varying characterization of alkali metals (Na, K) from coal during the initial stage of coal combustion[J]. Energy Fuels, 2001,15(4):786-793. doi: 10.1021/ef000140u

    46. [46]

      KOU Xue-sen, JIN Jing, LIU Dun-yu, ZHONG Cheng-peng, WANG Yong-zhen. An experimental investigation about influence of chlorine content on transfer characteristic of sodium and calcium in Zhundong coal[J]. Chem Ind Eng Prog, 2017,36(2):525-529.  

    47. [47]

      SUN Xin, ZHAO Bin, WANG Zi-bing, LIANG Jing-long, LI Hui. Effect of H2O(g) and SO2(g) on the volatilization and transformation of sodium during Xinjiang high-sodium coal combustion[J]. J Fuel Chem Technol, 2017,45(10):1178-1184. doi: 10.3969/j.issn.0253-2409.2017.10.004 

    48. [48]

      LI X, LI J, WU G G, BAI Z Q, LI W. Clean and efficient utilization of sodium-rich Zhundong coals in China:Behaviors of sodium species during thermal conversion processes[J]. Fuel, 2018,218:162-173. doi: 10.1016/j.fuel.2018.01.027

    49. [49]

      BLÄSING M, MÜLLER M. Mass spectrometric investigations on the release of inorganic species during gasification and combustion of Rhenish lignite[J]. Fuel, 2010,89(9):2417-2424. doi: 10.1016/j.fuel.2009.11.042

    50. [50]

      BLÄSING M, MELCHIOR T, MÜLLER M. Influence of temperature on the release of inorganic species during high temperature gasification of Rhenish lignite[J]. Fuel Process Technol, 2011,92(3):511-516. doi: 10.1016/j.fuproc.2010.11.005

    51. [51]

      NARUSE I, MURAKAMI T, NODA R, OHTAKE K. Influence of coal type on evolution characteristics of alkali metal compounds in coal combustion[J]. Sym Combust Proc, 1998,27(2):1711-1717.  

  • 加载中
    1. [1]

      Houzhen Xiao Mingyu Wang Yong Liu Bangsheng Lao Lingbin Lu Minghuai Yu . Course Ideological and Political Design of Combustion Heat Measurement Experiment. University Chemistry, 2024, 39(2): 7-13. doi: 10.3866/PKU.DXHX202310011

    2. [2]

      Shuyong Zhang Yaxian Zhu Wenqing Zhang Yuzhi Wang Jing Lu . Ideological and Political Design of Combustion Heat Measurement Experiment: Determination of Heat Value of Agricultural and Forestry Wastes. University Chemistry, 2024, 39(2): 1-6. doi: 10.3866/PKU.DXHX202303026

    3. [3]

      Xiuyun Wang Jiashuo Cheng Yiming Wang Haoyu Wu Yan Su Yuzhuo Gao Xiaoyu Liu Mingyu Zhao Chunyan Wang Miao Cui Wenfeng Jiang . Improvement of Sodium Ferric Ethylenediaminetetraacetate (NaFeEDTA) Iron Supplement Preparation Experiment. University Chemistry, 2024, 39(2): 340-346. doi: 10.3866/PKU.DXHX202308067

    4. [4]

      Zhuo WANGXiaotong LIZhipeng HUJunqiao PAN . Three-dimensional porous carbon decorated with nano bismuth particles: Preparation and sodium storage properties. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 267-274. doi: 10.11862/CJIC.20240223

    5. [5]

      Shanghua Li Malin Li Xiwen Chi Xin Yin Zhaodi Luo Jihong Yu . 基于高离子迁移动力学的取向ZnQ分子筛保护层实现高稳定水系锌金属负极的构筑. Acta Physico-Chimica Sinica, 2025, 41(1): 2309003-. doi: 10.3866/PKU.WHXB202309003

    6. [6]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    7. [7]

      Yurong Tang Yunren Shi Yi Xu Bo Qin Yanqin Xu Yunfei Cai . Innovative Experiment and Course Transformation Practice of Visible-Light-Mediated Photocatalytic Synthesis of Isoquinolinone. University Chemistry, 2024, 39(5): 296-306. doi: 10.3866/PKU.DXHX202311087

    8. [8]

      Zhicheng JUWenxuan FUBaoyan WANGAo LUOJiangmin JIANGYueli SHIYongli CUI . MOF-derived nickel-cobalt bimetallic sulfide microspheres coated by carbon: Preparation and long cycling performance for sodium storage. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 661-674. doi: 10.11862/CJIC.20240363

    9. [9]

      Yuchen Zhou Huanmin Liu Hongxing Li Xinyu Song Yonghua Tang Peng Zhou . Designing thermodynamically stable noble metal single-atom photocatalysts for highly efficient non-oxidative conversion of ethanol into high-purity hydrogen and value-added acetaldehyde. Acta Physico-Chimica Sinica, 2025, 41(6): 100067-. doi: 10.1016/j.actphy.2025.100067

    10. [10]

      Rui Li Huan Liu Yinan Jiao Shengjian Qin Jie Meng Jiayu Song Rongrong Yan Hang Su Hengbin Chen Zixuan Shang Jinjin Zhao . 卤化物钙钛矿的单双向离子迁移. Acta Physico-Chimica Sinica, 2024, 40(11): 2311011-. doi: 10.3866/PKU.WHXB202311011

    11. [11]

      Dongqi Cai Fuping Tian Zerui Zhao Yanjuan Zhang Yue Dai Feifei Huang Yu Wang . Exploration of Factors Influencing the Determination of Ion Migration Number by Hittorf Method. University Chemistry, 2024, 39(4): 94-99. doi: 10.3866/PKU.DXHX202310031

    12. [12]

      Jiayu Tang Jichuan Pang Shaohua Xiao Xinhua Xu Meifen Wu . Improvement for Measuring Transference Numbers of Ions by Moving-Boundary Method. University Chemistry, 2024, 39(5): 193-200. doi: 10.3866/PKU.DXHX202311021

    13. [13]

      Limei CHENMengfei ZHAOLin CHENDing LIWei LIWeiye HANHongbin WANG . Preparation and performance of paraffin/alkali modified diatomite/expanded graphite composite phase change thermal storage material. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 533-543. doi: 10.11862/CJIC.20230312

    14. [14]

      Zhilian Liu Wengui Wang Hongxiao Yang Yu Cui Shoufeng Wang . Ideological and Political Education Design for the Synthesis of Irinotecan Drug Intermediate 7-Ethyl Camptothecin. University Chemistry, 2024, 39(2): 89-93. doi: 10.3866/PKU.DXHX202306012

    15. [15]

      Jing WUPuzhen HUIHuilin ZHENGPingchuan YUANChunfei WANGHui WANGXiaoxia GU . Synthesis, crystal structures, and antitumor activities of transition metal complexes incorporating a naphthol-aldehyde Schiff base ligand. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2422-2428. doi: 10.11862/CJIC.20240278

    16. [16]

      Ronghao Zhao Yifan Liang Mengyao Shi Rongxiu Zhu Dongju Zhang . Investigation into the Mechanism and Migratory Aptitude of Typical Pinacol Rearrangement Reactions: A Research-Oriented Computational Chemistry Experiment. University Chemistry, 2024, 39(4): 305-313. doi: 10.3866/PKU.DXHX202309101

    17. [17]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    18. [18]

      Jiaqi Chen Chunhui Luan Yue Sun Qiyun Ma Wangfei Hao Yanjia Wang Xu Wu . Understanding the Dynamics of Heat and Cold through Chemistry: The Interplay of Chemical Energy and Thermal Energy. University Chemistry, 2024, 39(9): 214-223. doi: 10.12461/PKU.DXHX202312020

    19. [19]

      Xinghai Li Zhisen Wu Lijing Zhang Shengyang Tao . Machine Learning Enables the Prediction of Amide Bond Synthesis Based on Small Datasets. Acta Physico-Chimica Sinica, 2025, 41(2): 100010-. doi: 10.3866/PKU.WHXB202309041

    20. [20]

      Yongjian Zhang Fangling Gao Hong Yan Keyin Ye . Electrochemical Transformation of Organosulfur Compounds. University Chemistry, 2025, 40(5): 311-317. doi: 10.12461/PKU.DXHX202407035

Metrics
  • PDF Downloads(7)
  • Abstract views(956)
  • HTML views(181)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return