In-situ study of Ningdong char particles gasification characteristics on the interface of ash layer and slag
- Corresponding author: SONG Xu-dong, xdsong@nxu.edu.cn YU Guang-suo, gsyu@nxu.edu.cn
Citation:
ZHANG Lin-min, WANG Jiao-fei, BAI Yong-hui, SU Wei-guang, SONG Xu-dong, YU Guang-suo. In-situ study of Ningdong char particles gasification characteristics on the interface of ash layer and slag[J]. Journal of Fuel Chemistry and Technology,
;2020, 48(2): 129-136.
ZHANG Xin-sha, SONG Xu-dong, SU Wei-guang, WEI Jun-tao, BAI Yong-hui, YU Guang-suo. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. J Fuel Chem Technol, 2019,47(4):385-392.
ARANDA G G, GROOTJES A J, VAN DER MEIJDEN C M, VAN DER DRIFT A, GUPTA D F, SONDE R R, POOJARI S, MITRA C B. Conversion of high-ash coal under steam and CO2 gasification conditions[J]. Fuel Process Technol, 2016,141:16-30. doi: 10.1016/j.fuproc.2015.06.006
GONG Y, GUO Q, ZHANG J, FAN P, LIANG Q, YU G. Impinging flame characteristics in an opposed multiburner gasifier[J]. Ind Eng Chem Res, 2013,52(8):3007-3018. doi: 10.1021/ie3027857
WAGNER N J, MATJIE R H, SLAGHUIS J H, VAN HEERDEN J H P. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel, 2008,87(6):683-691. doi: 10.1016/j.fuel.2007.05.022
HUANG S, WU S, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Conver Manage, 2017,136:108-118. doi: 10.1016/j.enconman.2016.12.091
WANG J, KONG L, BAI J, ZHAO H, GUHL S, LI H, BAI Z, MEYER B, LI W. The role of residual char on ash flow behavior, Part 2: Effect of SiO2/Al2O3 on ash fusibility and carbothermal reaction[J]. Fuel, 2019,255115846. doi: 10.1016/j.fuel.2019.115846
ZHANG W, HUANG S, WU S, WU Y, GAO J. Study on the structure characteristics and gasification activity of residual carbon in biomass ashes obtained from different gasification technologies[J]. Fuel, 2019,254115699. doi: 10.1016/j.fuel.2019.115699
WU S, HUANG S, JI L, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014,122:67-75. doi: 10.1016/j.fuel.2014.01.011
ZHAO X, ZENG C, MAO Y, LI W, PENG Y, WANG T, EITENEER B, ZAMANSKY V, FLETCHER T. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy Fuels, 2010,24(1):91-94. doi: 10.1021/ef9005065
WU T, GONG M, LESTER E, WANG F, ZHOU Z, YU Z. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel, 2007,86(7/8):972-982.
WU Jia-qi, XU Shen-qi, ZHOU Zhi-jie, YU Guang-suo, WANG Fu-chen. Effects of molten slag on coal gasification reaction with CO2 at elevated temperature[J]. J Fuel Chem Technol, 2012,40(1):21-28. doi: 10.3969/j.issn.0253-2409.2012.01.004
LI P, YU Q, QIN Q, LEI W. Kinetics of CO2 /coal gasification in molten blast furnace slag[J]. Ind Eng Chem Res, 2012,51(49):15872-15883. doi: 10.1021/ie301678s
LI P, YU Q, XIE H, QIN Q, WANG K. CO2 gasification rate analysis of datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction[J]. Energy Fuels, 2013,27(8):4810-4817. doi: 10.1021/ef4009554
YANG F, YU Q, XIE H, ZUO Z, HOU L, QIN Q. Comparative kinetic study of coal gasification with steam and CO2 in molten blast furnace slags[J]. Korean J Chem Eng, 2018,35(8):1626-1635. doi: 10.1007/s11814-018-0076-y
LI P, LEI W, WU B, YU Q. CO2 gasification rate analysis of coal in molten blast furnace slag-For heat recovery from molten slag by using a chemical reaction[J]. Int J Hydrogen Energy, 2015,40(3):1607-1615.
DUAN W, YU Q, XIE H, LIU J, WANG K, QIN Q, HAN Z. Thermodynamic analysis of synergistic coal gasification using blast furnace slag as heat carrier[J]. Int J Hydrogen Energy, 2016,41(3):1502-1512.
LIU M, SHEN Z, LIANG Q, XU J, LIU H. New slag-char interaction mode in the later stage of high ash content coal char gasification[J]. Energy Fuels, 2018,32(11):11335-11343. doi: 10.1021/acs.energyfuels.8b02730
LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012,95:127-136. doi: 10.1016/j.fuproc.2011.12.006
SHEN Z, LIANG Q, XU J, LIU H, LIN K. Study on the fragmentation behaviors of deposited particles on the molten slag surface and their effects on gasification for different coal ranks and petroleum coke[J]. Energy Fuels, 2018,32(9):9243-9254. doi: 10.1021/acs.energyfuels.8b02053
SHEN Z, LIANG Q, XU J, ZHANG B, LIU H. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel, 2015,160:560-567. doi: 10.1016/j.fuel.2015.08.010
Xueting Cao , Shuangshuang Cha , Ming Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041
Da Wang , Xiaobin Yin , Jianfang Wu , Yaqiao Luo , Siqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029
Shi-Yu Lu , Wenzhao Dou , Jun Zhang , Ling Wang , Chunjie Wu , Huan Yi , Rong Wang , Meng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024
Qiuyang LUO , Xiaoning TANG , Shu XIA , Junnan LIU , Xingfu YANG , Jie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110
Congying Lu , Fei Zhong , Zhenyu Yuan , Shuaibing Li , Jiayao Li , Jiewen Liu , Xianyang Hu , Liqun Sun , Rui Li , Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097
Yu Wang , Haiyang Shi , Zihan Chen , Feng Chen , Ping Wang , Xuefei Wang . 具有富电子Ptδ−壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081
Jianan Hong , Chenyu Xu , Yan Liu , Changqi Li , Menglin Wang , Yanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099
Lina Guo , Ruizhe Li , Chuang Sun , Xiaoli Luo , Yiqiu Shi , Hong Yuan , Shuxin Ouyang , Tierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002
Jiajie Li , Xiaocong Ma , Jufang Zheng , Qiang Wan , Xiaoshun Zhou , Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117
Fanpeng Meng , Fei Zhao , Jingkai Lin , Jinsheng Zhao , Huayang Zhang , Shaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095
Jiao CHEN , Yi LI , Yi XIE , Dandan DIAO , Qiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403
Shengjuan Huo , Xiaoyan Zhang , Xiangheng Li , Xiangning Li , Tianfang Chen , Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127
Bo YANG , Gongxuan LÜ , Jiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063
Tao Xu , Wei Sun , Tianci Kong , Jie Zhou , Yitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021
Zhi Dou , Huiyu Duan , Yixi Lin , Yinghui Xia , Mingbo Zheng , Zhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039
Yingying Chen , Di Xu , Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057
Shanghua Li , Malin Li , Xiwen Chi , Xin Yin , Zhaodi Luo , Jihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003
Yixuan Wang , Canhui Zhang , Xingkun Wang , Jiarui Duan , Kecheng Tong , Shuixing Dai , Lei Chu , Minghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004
Xinlong WANG , Zhenguo CHENG , Guo WANG , Xiaokuen ZHANG , Yong XIANG , Xinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259
Chunai Dai , Yongsheng Han , Luting Yan , Zhen Li , Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065
(a): gasification temperature at 1100 ℃; (b): gasification temperature at 1200 ℃; (c): gasification temperature at 1300 ℃