Citation: ZHANG Lin-min, WANG Jiao-fei, BAI Yong-hui, SU Wei-guang, SONG Xu-dong, YU Guang-suo. In-situ study of Ningdong char particles gasification characteristics on the interface of ash layer and slag[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(2): 129-136. shu

In-situ study of Ningdong char particles gasification characteristics on the interface of ash layer and slag

  • Corresponding author: SONG Xu-dong, xdsong@nxu.edu.cn YU Guang-suo, gsyu@nxu.edu.cn
  • Received Date: 16 September 2019
    Revised Date: 29 November 2019

    Fund Project: TProject of Key Research Plan of Ningxia 2019BCH01001The project was supported by National Natural Science Foundation of China 21968024The project was supported by National Natural Science Foundation of China ( 21968024 ) and Project of Key Research Plan of Ningxia(2019BCH01001).

Figures(7)

  • A thermogravimetric analyzer and in-situ heating microscope were used to study gasification reaction of coal char particles on the interface of ash layer and slag at 1100, 1200 and 1300 ℃, using typical Ningdong coal-Yangchangwan coal as gasification raw material. The results show that the shape change of ash layer interface and slag interface under different gasification temperature is the main factor that affects the gasification reactivity of coal char particles. When the gasification temperature is 1100 ℃, the ash layer shrinks and wraps on the surface of coal char particles at high temperature, preventing the contact between gasifying agent and coal char particles and reducing the gasification reaction of char particle. However, the interface of slag does not change significantly, and the gasification reaction rate of coal char on the slag interface remains unchanged. When the gasification temperature is 1300 ℃, the interface of both ash layer and slag turns into a liquid phase. Under the surface tension, the char particles are broken, the effective reaction area became larger, and the heat transfer rate increases, thereby increasing gasification reaction rate of the coal char.
  • 加载中
    1. [1]

      ZHANG Xin-sha, SONG Xu-dong, SU Wei-guang, WEI Jun-tao, BAI Yong-hui, YU Guang-suo. In-situ study on gasification reaction characteristics of Ningdong coal chars with CO2[J]. J Fuel Chem Technol, 2019,47(4):385-392.  

    2. [2]

      ARANDA G G, GROOTJES A J, VAN DER MEIJDEN C M, VAN DER DRIFT A, GUPTA D F, SONDE R R, POOJARI S, MITRA C B. Conversion of high-ash coal under steam and CO2 gasification conditions[J]. Fuel Process Technol, 2016,141:16-30. doi: 10.1016/j.fuproc.2015.06.006

    3. [3]

      GONG Y, GUO Q, ZHANG J, FAN P, LIANG Q, YU G. Impinging flame characteristics in an opposed multiburner gasifier[J]. Ind Eng Chem Res, 2013,52(8):3007-3018. doi: 10.1021/ie3027857

    4. [4]

      WAGNER N J, MATJIE R H, SLAGHUIS J H, VAN HEERDEN J H P. Characterization of unburned carbon present in coarse gasification ash[J]. Fuel, 2008,87(6):683-691. doi: 10.1016/j.fuel.2007.05.022

    5. [5]

      HUANG S, WU S, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from updraft fixed-bed biomass gasification ash[J]. Energy Conver Manage, 2017,136:108-118. doi: 10.1016/j.enconman.2016.12.091

    6. [6]

      WANG J, KONG L, BAI J, ZHAO H, GUHL S, LI H, BAI Z, MEYER B, LI W. The role of residual char on ash flow behavior, Part 2: Effect of SiO2/Al2O3 on ash fusibility and carbothermal reaction[J]. Fuel, 2019,255115846. doi: 10.1016/j.fuel.2019.115846

    7. [7]

      ZHANG W, HUANG S, WU S, WU Y, GAO J. Study on the structure characteristics and gasification activity of residual carbon in biomass ashes obtained from different gasification technologies[J]. Fuel, 2019,254115699. doi: 10.1016/j.fuel.2019.115699

    8. [8]

      WU S, HUANG S, JI L, WU Y, GAO J. Structure characteristics and gasification activity of residual carbon from entrained-flow coal gasification slag[J]. Fuel, 2014,122:67-75. doi: 10.1016/j.fuel.2014.01.011

    9. [9]

      ZHAO X, ZENG C, MAO Y, LI W, PENG Y, WANG T, EITENEER B, ZAMANSKY V, FLETCHER T. The surface characteristics and reactivity of residual carbon in coal gasification slag[J]. Energy Fuels, 2010,24(1):91-94. doi: 10.1021/ef9005065

    10. [10]

      WU T, GONG M, LESTER E, WANG F, ZHOU Z, YU Z. Characterisation of residual carbon from entrained-bed coal water slurry gasifiers[J]. Fuel, 2007,86(7/8):972-982.  

    11. [11]

      WU Jia-qi, XU Shen-qi, ZHOU Zhi-jie, YU Guang-suo, WANG Fu-chen. Effects of molten slag on coal gasification reaction with CO2 at elevated temperature[J]. J Fuel Chem Technol, 2012,40(1):21-28. doi: 10.3969/j.issn.0253-2409.2012.01.004

    12. [12]

      LI P, YU Q, QIN Q, LEI W. Kinetics of CO2 /coal gasification in molten blast furnace slag[J]. Ind Eng Chem Res, 2012,51(49):15872-15883. doi: 10.1021/ie301678s

    13. [13]

      LI P, YU Q, XIE H, QIN Q, WANG K. CO2 gasification rate analysis of datong coal using slag granules as heat carrier for heat recovery from blast furnace slag by using a chemical reaction[J]. Energy Fuels, 2013,27(8):4810-4817. doi: 10.1021/ef4009554

    14. [14]

      YANG F, YU Q, XIE H, ZUO Z, HOU L, QIN Q. Comparative kinetic study of coal gasification with steam and CO2 in molten blast furnace slags[J]. Korean J Chem Eng, 2018,35(8):1626-1635. doi: 10.1007/s11814-018-0076-y

    15. [15]

      LI P, LEI W, WU B, YU Q. CO2 gasification rate analysis of coal in molten blast furnace slag-For heat recovery from molten slag by using a chemical reaction[J]. Int J Hydrogen Energy, 2015,40(3):1607-1615.  

    16. [16]

      DUAN W, YU Q, XIE H, LIU J, WANG K, QIN Q, HAN Z. Thermodynamic analysis of synergistic coal gasification using blast furnace slag as heat carrier[J]. Int J Hydrogen Energy, 2016,41(3):1502-1512.  

    17. [17]

      LIU M, SHEN Z, LIANG Q, XU J, LIU H. New slag-char interaction mode in the later stage of high ash content coal char gasification[J]. Energy Fuels, 2018,32(11):11335-11343. doi: 10.1021/acs.energyfuels.8b02730

    18. [18]

      LI S, WHITTY K J. Physical phenomena of char-slag transition in pulverized coal gasification[J]. Fuel Process Technol, 2012,95:127-136. doi: 10.1016/j.fuproc.2011.12.006

    19. [19]

      SHEN Z, LIANG Q, XU J, LIU H, LIN K. Study on the fragmentation behaviors of deposited particles on the molten slag surface and their effects on gasification for different coal ranks and petroleum coke[J]. Energy Fuels, 2018,32(9):9243-9254. doi: 10.1021/acs.energyfuels.8b02053

    20. [20]

      SHEN Z, LIANG Q, XU J, ZHANG B, LIU H. In-situ experimental study of CO2 gasification of char particles on molten slag surface[J]. Fuel, 2015,160:560-567. doi: 10.1016/j.fuel.2015.08.010

  • 加载中
    1. [1]

      Xueting CaoShuangshuang ChaMing Gong . Interfacial Electrical Double Layer in Electrocatalytic Reactions: Fundamentals, Characterizations and Applications. Acta Physico-Chimica Sinica, 2025, 41(5): 100041-0. doi: 10.1016/j.actphy.2024.100041

    2. [2]

      Da WangXiaobin YinJianfang WuYaqiao LuoSiqi Shi . All-Solid-State Lithium Cathode/Electrolyte Interfacial Resistance: From Space-Charge Layer Model to Characterization and Simulation. Acta Physico-Chimica Sinica, 2024, 40(7): 2307029-0. doi: 10.3866/PKU.WHXB202307029

    3. [3]

      Shi-Yu LuWenzhao DouJun ZhangLing WangChunjie WuHuan YiRong WangMeng Jin . Amorphous-Crystalline Interfaces Coupling of CrS/CoS2 Few-Layer Heterojunction with Optimized Crystallinity Boosted for Water-Splitting and Methanol-Assisted Energy-Saving Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(8): 2308024-0. doi: 10.3866/PKU.WHXB202308024

    4. [4]

      Qiuyang LUOXiaoning TANGShu XIAJunnan LIUXingfu YANGJie LEI . Application of a densely hydrophobic copper metal layer in-situ prepared with organic solvents for protecting zinc anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1243-1253. doi: 10.11862/CJIC.20240110

    5. [5]

      Congying Lu Fei Zhong Zhenyu Yuan Shuaibing Li Jiayao Li Jiewen Liu Xianyang Hu Liqun Sun Rui Li Meijuan Hu . Experimental Improvement of Surfactant Interface Chemistry: An Integrated Design for the Fusion of Experiment and Simulation. University Chemistry, 2024, 39(3): 283-293. doi: 10.3866/PKU.DXHX202308097

    6. [6]

      Yu WangHaiyang ShiZihan ChenFeng ChenPing WangXuefei Wang . 具有富电子Ptδ壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-0. doi: 10.1016/j.actphy.2025.100081

    7. [7]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    8. [8]

      Lina GuoRuizhe LiChuang SunXiaoli LuoYiqiu ShiHong YuanShuxin OuyangTierui Zhang . Effect of Interlayer Anions in Layered Double Hydroxides on the Photothermocatalytic CO2 Methanation of Derived Ni-Al2O3 Catalysts. Acta Physico-Chimica Sinica, 2025, 41(1): 100002-0. doi: 10.3866/PKU.WHXB202309002

    9. [9]

      Jiajie Li Xiaocong Ma Jufang Zheng Qiang Wan Xiaoshun Zhou Yahao Wang . Recent Advances in In-Situ Raman Spectroscopy for Investigating Electrocatalytic Organic Reaction Mechanisms. University Chemistry, 2025, 40(4): 261-276. doi: 10.12461/PKU.DXHX202406117

    10. [10]

      Fanpeng MengFei ZhaoJingkai LinJinsheng ZhaoHuayang ZhangShaobin Wang . Optimizing interfacial electric fields in carbon nitride nanosheet/spherical conjugated polymer S-scheme heterojunction for hydrogen evolution. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-0. doi: 10.1016/j.actphy.2025.100095

    11. [11]

      Jiao CHENYi LIYi XIEDandan DIAOQiang XIAO . Vapor-phase transport of MFI nanosheets for the fabrication of ultrathin b-axis oriented zeolite membranes. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 507-514. doi: 10.11862/CJIC.20230403

    12. [12]

      Shengjuan Huo Xiaoyan Zhang Xiangheng Li Xiangning Li Tianfang Chen Yuting Shen . Unveiling the Marvels of Titanium: Popularizing Multifunctional Colored Titanium Product Films. University Chemistry, 2024, 39(5): 184-192. doi: 10.3866/PKU.DXHX202310127

    13. [13]

      Bo YANGGongxuan LÜJiantai MA . Corrosion inhibition of nickel-cobalt-phosphide in water by coating TiO2 layer. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 365-384. doi: 10.11862/CJIC.20240063

    14. [14]

      Tao XuWei SunTianci KongJie ZhouYitai Qian . Stable Graphite Interface for Potassium Ion Battery Achieving Ultralong Cycling Performance. Acta Physico-Chimica Sinica, 2024, 40(2): 2303021-0. doi: 10.3866/PKU.WHXB202303021

    15. [15]

      Zhi DouHuiyu DuanYixi LinYinghui XiaMingbo ZhengZhenming Xu . High-Throughput Screening Lithium Alloy Phases and Investigation of Ion Transport for Solid Electrolyte Interphase Layer. Acta Physico-Chimica Sinica, 2024, 40(3): 2305039-0. doi: 10.3866/PKU.WHXB202305039

    16. [16]

      Yingying Chen Di Xu Congmin Wang . Exploration and Practice of the “Four-Level, Three-Linkage” General Chemistry Course System. University Chemistry, 2024, 39(8): 119-125. doi: 10.3866/PKU.DXHX202401057

    17. [17]

      Shanghua LiMalin LiXiwen ChiXin YinZhaodi LuoJihong Yu . High-Stable Aqueous Zinc Metal Anodes Enabled by an Oriented ZnQ Zeolite Protective Layer with Facile Ion Migration Kinetics. Acta Physico-Chimica Sinica, 2025, 41(1): 100003-0. doi: 10.3866/PKU.WHXB202309003

    18. [18]

      Yixuan WangCanhui ZhangXingkun WangJiarui DuanKecheng TongShuixing DaiLei ChuMinghua Huang . Engineering Carbon-Chainmail-Shell Coated Co9Se8 Nanoparticles as Efficient and Durable Catalysts in Seawater-Based Zn-Air Batteries. Acta Physico-Chimica Sinica, 2024, 40(6): 2305004-0. doi: 10.3866/PKU.WHXB202305004

    19. [19]

      Xinlong WANGZhenguo CHENGGuo WANGXiaokuen ZHANGYong XIANGXinquan WANG . Enhancement of the fragile interface of high voltage LiCoO2 by surface gradient permeation of trace amounts of Mg/F. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 571-580. doi: 10.11862/CJIC.20230259

    20. [20]

      Chunai Dai Yongsheng Han Luting Yan Zhen Li Yingze Cao . Ideological and Political Design of Solid-liquid Contact Angle Measurement Experiment. University Chemistry, 2024, 39(2): 28-33. doi: 10.3866/PKU.DXHX202306065

Metrics
  • PDF Downloads(4)
  • Abstract views(1086)
  • HTML views(121)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return