Citation: ZHAO Ke-ke, HUANG Xin, JIA Li-tao, HOU Bo, LI De-bao. Effect of W addition on the catalytic properties of Mo/HZSM-5 catalyst in methane non-oxidative dehydroaromatization[J]. Journal of Fuel Chemistry and Technology, ;2017, 45(11): 1384-1391. shu

Effect of W addition on the catalytic properties of Mo/HZSM-5 catalyst in methane non-oxidative dehydroaromatization

  • Corresponding author: HUANG Xin, huangxin@sxicc.ac.cn JIA Li-tao, jialitao@sxicc.ac.cn
  • Received Date: 31 May 2017
    Revised Date: 13 August 2017

    Fund Project: The project was supported by the National Natural Science Foundation of China (21273265) and the Coal Base Key Technologies R & D Program of ShanXi Province (MH2014-13)the Coal Base Key Technologies R & D Program of ShanXi Province MH2014-13the National Natural Science Foundation of China 21273265

Figures(8)

  • Mo/HZSM-5, Mo-W/HZSM-5 and W/HZSM-5 catalysts were prepared via a conventional impregnation method. The catalysts were characterized by means of XRD, BET, Py-FTIR, H2-TPR, XPS, TEM, NH3-TPD, TPO, TG and Raman, and were evaluated in methane non-oxidative dehydroaromatization(MDA). Compared with Mo/HZSM-5, the CH4 conversion, aromatics yield and catalytic stability were improved by W addition for Mo-W/HZSM-5 in MDA reaction. H2-TPR and XPS results indicated that the octahedral (WO6)n- groups existed in Mo-W/HZSM-5 were more easily reduced to W4+-containing species in MDA reaction in comparison with W/HZSM-5, and W4+-containing species was correlated with the high MDA activity. At the same time, it is found that graphitic-like coking is the main reason of catalyst deactivation for Mo/HZSM-5, and this coking over Mo-W/HZSM-5 catalyst can be inhibited by W addition during MDA.
  • 加载中
    1. [1]

      SPIVEY J J, HUTCHINGS G. Catalytic aromatization of methane[J]. Chem Soc Rev, 2014,43(3):792-803. doi: 10.1039/C3CS60259A

    2. [2]

      WANG Hua, LIU Zhong-min. Progress in direct conversion of methane[J]. Prog Chem, 2004,16(4):593-602.  

    3. [3]

      WANG L S, TAO L X, XIE M S, XU G F, HUANG J S, XU Y D. Dehydrogenation and aromatization of methane under non-oxidizing conditions[J]. Catal Lett, 1993,21(1):35-41.  

    4. [4]

      KARAKAYA C, KEE R J. Progress in the direct catalytic conversion of methane to fuels and chemicals[J]. Prog Energy Combust Sci, 2016,55:60-97. doi: 10.1016/j.pecs.2016.04.003

    5. [5]

      GUO X G, FANG G Z, LI G, MA H, FAN H J, YU L, MA C, WU X, DENG D H, WEI M M, TAN D L, SI R, ZHANG S, LI J Q, SUN L T, TANG Z C, PAN X L, BAO X H. Direct, nonoxidative conversion of methane to ethylene, aromatics, andhydrogen[J]. Science, 2014,344(2):616-619.  

    6. [6]

      SCHWACH P, PAN X L, BAO X H. Direct conversion of methane to value-added chemicals overheterogeneous catalysts:Challenges and prospects[J]. Chem Rev, 2017,177:8497-8520.  

    7. [7]

      LIU H M, SU LL, WANG H X, SHEN W J, BAO X H, XU Y D. The chemical nature of carbonaceous deposits and their role in methane dehydro-aromatization on Mo/MCM-22 catalysts[J]. Appl Catal A:Gen, 2002,236(1):263-280.  

    8. [8]

      TEMPELMAN C H L, HENSEN E J M. On the deactivation of Mo/HZSM-5 in the methane dehydroaromatizationreaction[J]. Appl Catal B:Environ, 2015,176/177:731-739. doi: 10.1016/j.apcatb.2015.04.052

    9. [9]

      MA Ji-yuan, LU Jiang-yin, YUAN Zhao, WANG Chun-xiao. Methane dehydroaromatization over cobalt modified Mo/HZSM-5 catalysts in absence of oxidants[J]. Chin Petrol Process Petrochem Technol, 2013,44(11):29-34. doi: 10.3969/j.issn.1005-2399.2013.11.006

    10. [10]

      MA Ji-yuan, ZHANG Hang-fei, YIN Jin-lian, ZHOU Rong, LU Jiang-yin. Methane dehydroaromatization over Ni modified Mo-Co/HZSM-5 catalysts[J]. Nat Gas Chem Ind, 2016,41(2):19-24.  

    11. [11]

      LIU Hong-mei, SHEN Wen-jie, BAO Xin-he, XU Yi-de. Effect of Co additive on the formation of carbon deposit on Mo/MCM-22 catalyst for methane dehydro-aromatization[J]. Chin J Catal, 2004,25(6):495-500.  

    12. [12]

      LIU B S, YANG Y, SAYARI A. Non-oxidative dehydroaromatization of methane over Ga-promoted Mo/HZSM-5-based catalysts[J]. Appl Catal A:Gen, 2001,214(1):95-102. doi: 10.1016/S0926-860X(01)00470-7

    13. [13]

      WONG S T, XU Y D, WANG L S, LIU S T, LI G J, XIE M S, GUO X X. Methane and ethane activation without adding oxygen:promotional effect of W in Mo-W/HZSM-5[J]. Catal Lett, 1996,38(1):39-43.  

    14. [14]

      KOSINOV N, COUMANS F J A G, LI G N, USLAMIN E, MEZARI B, WIJPKEMA A S G, PIDKO E A, HENSEN E J M. Stable Mo/HZSM-5 methane dehydroaromatization catalysts optimized for igh-temperature calcinations-regeneration[J]. J Catal, 2017,346:125-133. doi: 10.1016/j.jcat.2016.12.006

    15. [15]

      LIU Heng, KAN Qiu-bin. Synthesis ofhierarchical Mo/H-IM-5 catalysts by using mesoporous material as the silica source and its application in methane non-oxidative aromatization[J]. J Fuel Chem Technol, 2016,44(11):1380-1387. doi: 10.3969/j.issn.0253-2409.2016.11.015 

    16. [16]

      ZENG J L, XIONG Z T, ZHANG H B, LIN G D, TSAI K R. Nonoxidative dehydrogenation and aromatization of methane over W/HZSM-5-based catalysts[J]. Catal Lett, 1998,53(1):119-124.  

    17. [17]

      XIONG Zhi-tao, ZENG Jin-long, ZHANG Hong-bin, LIN Guo-dong, CAI Qi-rui. Study of preparation of W/HZSM-5-based catalysts for non-oxidative dehydro-aromatization of methane[J]. Chin J Catal, 1999,20(1):35-40.  

    18. [18]

      ZENG Jin-long, XIONG Zhi-tao, YU La-jia, LIN Guo-dong, ZHANG Hong-bin. EPR spectroscopic characterization of W/HZSM-5 based catalysts for dehydro-aromatization of methane[J]. J Xiamen Univ (Nat Sci), 1998,37(4):532-536.  

    19. [19]

      HUANG Li-qiang, ZENG Jin-long, LIN Guo-dong, YUAN You-zhu, ZHANG Hong-bin. Study on doubly promoted W/MCM-22-based catalysts for dehydro-aromatization of CH4 in the absence of O2[J]. Acta Chim Sin, 2004,62(18):1706-1712. doi: 10.3321/j.issn:0567-7351.2004.18.007

    20. [20]

      HUANG Li-qiang, LIN Zhong-yu, YU La-jia, LIAO Xin-li, ZENG Jin-long, ZHANG Hong-bin. Characterization of carbon deposits on W/MCM-22-based catalysts for dehydro-aromatization of CH4 in absence of O2[J]. J Xiamen Univ (Nat Sci), 2005,44(1):71-76.  

    21. [21]

      HUANG L Y, XU H, LI Y P, LI H M, CHENG X N, XIA J X, XU Y G, CAI G B. Visible-light-induced WO3/g-C3N4 composites with enhanced photocatalytic activity[J]. Dalton Trans, 2013,42(24):8606-8616. doi: 10.1039/c3dt00115f

    22. [22]

      HUANG X, SUN N N, XUE G X, WANG C Z, ZHAN H J, ZHAO N, XIAO F K, WEI W, SUN Y H. Effect of pore geometries on the catalytic properties of NiO-Al2O3 catalysts in CO2 reforming of methane[J]. Rsc Adv, 2015,5(27):21090-21098. doi: 10.1039/C4RA16313C

    23. [23]

      HUANG X, XUE G X, WANG C Z, ZHAO N, SUN N N, WEI W, SUN Y H. Highly stable mesoporous NiO-Y2O3-Al2O3 catalysts for CO2 reforming of methane:Effect of Ni embedding and Y2O3 promotion[J]. Catal Sci Technol, 2015,6(2):449-459.  

    24. [24]

      SONG Y, ZHANG Q, XU Y B, ZHANG Y, KOICHIM , ZHANG Z G. Coke accumulation and deactivation behavior of microzeolite-based Mo/HZSM-5 in the non-oxidative methane aromatization under cyclic CH4-H2 feed switch mode[J]. Appl Catal A:Gen, 2017,530:12-20. doi: 10.1016/j.apcata.2016.11.016

    25. [25]

      QUEK X Y, LIU D P, WEI N E C, WANG H, CHEN Y, YANG Y H. Nickel-grafted TUD-1 mesoporous catalysts for carbon dioxide reforming of methane[J]. Appl Catal B:Environ, 2010,95(3):374-382.  

    26. [26]

      HUANG X, JI C C, WANG C Z, XIAO F K, ZHAO N, SUN N N, WEI W, SUN Y H. Ordered mesoporous CoO-NiO-Al2O3bimetallic catalysts with dual confinement effects for CO2 reforming of CH4[J]. Catal Today, 2017,281:241-249. doi: 10.1016/j.cattod.2016.02.064

    27. [27]

      MATUS E V, ISMAGILOV I Z, SUKHOVA O B, ZAIKOVSKII V I, TSIKOZA L T, ISMAGILOV Z R. Study of methane dehydroaromatization on impregnated Mo/ZSM-5 catalysts and characterization of nanostructured molybdenum phases and carbonaceous deposits[J]. Ind Eng Chem Res, 2007,46(12):4063-4074. doi: 10.1021/ie0609564

    28. [28]

      LIU B S, JIANG L, SUN H, AU C T. XPS, XAES, and TG/DTA characterization of deposited carbon in methane dehydroaromatization over Ga-Mo/ZSM-5 catalyst[J]. Appl Surf Sci, 2007,253(11):5092-5100. doi: 10.1016/j.apsusc.2006.11.031

  • 加载中
    1. [1]

      Zizheng LUWanyi SUQin SHIHonghui PANChuanqi ZHAOChengfeng HUANGJinguo PENG . Surface state behavior of W doped BiVO4 photoanode for ciprofloxacin degradation. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 591-600. doi: 10.11862/CJIC.20230225

    2. [2]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    3. [3]

      Xiaosong PUHangkai WUTaohong LIHuijuan LIShouqing LIUYuanbo HUANGXuemei LI . Adsorption performance and removal mechanism of Cd(Ⅱ) in water by magnesium modified carbon foam. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1537-1548. doi: 10.11862/CJIC.20240030

    4. [4]

      Hongxia Yan Rui Wu Weixu Feng Yan Zhao Yi Yan . Innovation Inspired by Classical Chemistry: Luminescent Hyperbranched Polysiloxanes. University Chemistry, 2025, 40(4): 154-159. doi: 10.12461/PKU.DXHX202409010

    5. [5]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

    6. [6]

      Guanghui SUIYanyan CHENG . Application of rice husk-based activated carbon-loaded MgO composite for symmetric supercapacitors. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 521-530. doi: 10.11862/CJIC.20240221

    7. [7]

      Jianjun LIMingjie RENLili ZHANGLingling ZENGHuiling WANGXiangwu MENG . UV-assisted degradation of tetracycline hydrochloride by MnFe2O4@activated carbon activated persulfate. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1869-1880. doi: 10.11862/CJIC.20240187

    8. [8]

      Mingjie Lei Wenting Hu Kexin Lin Xiujuan Sun Haoshen Zhang Ye Qian Tongyue Kang Xiulin Wu Hailong Liao Yuan Pan Yuwei Zhang Diye Wei Ping Gao . Co/Mn/Mo掺杂加速NiSe2重构以提高其电催化尿素氧化性能. Acta Physico-Chimica Sinica, 2025, 41(8): 100083-. doi: 10.1016/j.actphy.2025.100083

    9. [9]

      Rui Gao Ying Zhou Yifan Hu Siyuan Chen Shouhong Xu Qianfu Luo Wenqing Zhang . Design, Synthesis and Performance Experiment of Novel Photoswitchable Hybrid Tetraarylethenes. University Chemistry, 2024, 39(5): 125-133. doi: 10.3866/PKU.DXHX202310050

    10. [10]

      Yinuo Wang Siran Wang Yilong Zhao Dazhen Xu . Selective Synthesis of Diarylmethyl Anilines and Triarylmethanes via Multicomponent Reactions: Introduce a Comprehensive Experiment of Organic Chemistry. University Chemistry, 2024, 39(8): 324-330. doi: 10.3866/PKU.DXHX202401063

    11. [11]

      Zongfei YANGXiaosen ZHAOJing LIWenchang ZHUANG . Research advances in heteropolyoxoniobates. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 465-480. doi: 10.11862/CJIC.20230306

    12. [12]

      Zhongyan Cao Shengnan Jin Yuxia Wang Yiyi Chen Xianqiang Kong Yuanqing Xu . Advances in Highly Selective Reactions Involving Phenol Derivatives as Aryl Radical Precursors. University Chemistry, 2025, 40(4): 245-252. doi: 10.12461/PKU.DXHX202405186

    13. [13]

      Yu Peng Jiawei Chen Yue Yin Yongjie Cao Mochou Liao Congxiao Wang Xiaoli Dong Yongyao Xia . 无碳酸乙烯酯电解液定向构筑正极电解质界面相实现高电压钴酸锂的宽温域稳定运行. Acta Physico-Chimica Sinica, 2025, 41(8): 100087-. doi: 10.1016/j.actphy.2025.100087

    14. [14]

      Hongsheng Tang Yonghe Zhang Dexiang Wang Xiaohui Ning Tianlong Zhang Yan Li Hua Li . A Wonderful Journey through the Kingdom of Hazardous Chemicals. University Chemistry, 2024, 39(9): 196-202. doi: 10.12461/PKU.DXHX202403098

    15. [15]

      Pengzi Wang Wenjing Xiao Jiarong Chen . Copper-Catalyzed C―O Bond Formation by Kharasch-Sosnovsky-Type Reaction. University Chemistry, 2025, 40(4): 239-244. doi: 10.12461/PKU.DXHX202406090

    16. [16]

      Guowen Xing Guangjian Liu Le Chang . Five Types of Reactions of Carbonyl Oxonium Intermediates in University Organic Chemistry Teaching. University Chemistry, 2025, 40(4): 282-290. doi: 10.12461/PKU.DXHX202407058

    17. [17]

      Cheng PENGJianwei WEIYating CHENNan HUHui ZENG . First principles investigation about interference effects of electronic and optical properties of inorganic and lead-free perovskite Cs3Bi2X9 (X=Cl, Br, I). Chinese Journal of Inorganic Chemistry, 2024, 40(3): 555-560. doi: 10.11862/CJIC.20230282

    18. [18]

      Ming ZHENGYixiao ZHANGJian YANGPengfei GUANXiudong LI . Energy storage and photoluminescence properties of Sm3+-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 lead-free multifunctional ferroelectric ceramics. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 686-692. doi: 10.11862/CJIC.20230388

    19. [19]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    20. [20]

      Jinfeng Chu Yicheng Wang Ji Qi Yulin Liu Yan Li Lan Jin Lei He Yufei Song . Comprehensive Chemical Experiment Design: Convenient Preparation and Characterization of an Oxygen-Bridged Trinuclear Iron(III) Complex. University Chemistry, 2024, 39(7): 299-306. doi: 10.3866/PKU.DXHX202310105

Metrics
  • PDF Downloads(0)
  • Abstract views(2242)
  • HTML views(667)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return