Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel
- Corresponding author: ZHANG Ping-bo, pingbozhang@126.com
Citation:
WU Hao, FAN Ming-ming, ZHANG Ping-bo, JIANG Ping-ping. Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel[J]. Journal of Fuel Chemistry and Technology,
;2019, 47(1): 60-65.
HÖÖK M, TANG X. Depletion of fossil fuels and anthropogenic climate change:A review[J]. Energy Policy, 2013,52:797-809. doi: 10.1016/j.enpol.2012.10.046
WILSON K, LEE A F. Rational design of heterogeneous catalysts for biodiesel synthesis[J]. Catal Sci Technol, 2012,2(5):884-897. doi: 10.1039/c2cy20038d
LEUNG D Y C, WU X, LEUNG M K H. A review on biodiesel production using catalyzed transesterification[J]. App Energy, 2010,87(4):1083-1095. doi: 10.1016/j.apenergy.2009.10.006
ATABANI A E, SILITONGA A S, BADRUDDIN I A, MAHLIA T M I, MEKHILEF M S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renewable Sustainable Energy Rev, 2012,16(4):2070-2093. doi: 10.1016/j.rser.2012.01.003
PINZI S, GARCIA I L, LOPEZ-GIMENEZ F J, LUQUE DE CASTRO M D, DORADO G, DORADO M P. The ideal vegetable oil-based biodiesel composition:A review of social, economical and technical implications[J]. Energy Fuels, 2009,23(5):2325-2341. doi: 10.1021/ef801098a
DEMIRBAS A. Progress and recent trends in biodiesel fuels[J]. Energy Convers Manage, 2009,50(1):14-34. doi: 10.1016/j.enconman.2008.09.001
SU F, GUO Y. Advancements in solid acid catalysts for biodiesel production[J]. Green Chem, 2014,16(6):2934-2957. doi: 10.1039/C3GC42333F
WANG Hong-hong, LIU Li-jun, GONG Shu-wen. Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst[J]. J Fuel Chem Technol, 2017,45(3):303-310. doi: 10.3969/j.issn.0253-2409.2017.03.007
SHIBASAKI-KITAKAWA N, HONDA H, KURIBAYASHI H, TODA T, FUKUMURA T, YONEMOTO T. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst[J]. Bioresour Technol, 2007,98(2):416-421. doi: 10.1016/j.biortech.2005.12.010
MARGOLESE D, MELERO J A, CHRISTIANSEN S C, CHMELKA B F, STUCKY G D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups[J]. Chem Mater, 2000,12(8):2448-2459. doi: 10.1021/cm0010304
LI Meng-tian, JIANG Ping-ping, ZHANG Ping-bo. Catalytic synthesis of methyl oleate by carbonbased solid acid[J]. Fine Chem, 2018,35(4):638-644.
LOU Wen-yong, CAI Jun, DUAN Zhang-qun, ZONG Min-hua. Preparation of cellulose-derived solid acid catalyst and its use for production of biodiesel from waste oils with high acid value[J]. Chin J Catal, 2011,32(5):1755-1761.
ZENG D L, LIU S L, GONG W J, WANG G H, QIU J H, CHEN H X. Synthesis, characterization and acid catalysis of solid acid from peanut shell[J]. Appl Catal A:Gen, 2014,469:284-289. doi: 10.1016/j.apcata.2013.09.038
SHEN Zhong-quan, YU Xi-meng, CHEN Ji-zhong. Esterification reactions catalyzed by novel sulfonated carbon material derived from bamboo[J]. J Chem Ind Eng, 2015,66(8):3072-3077.
NIU Sheng-yang, SHAO Feng-ge. Application progress in the carboxymethyl cellulose sodium[J]. J Anhui Agri Sci, 2006,34(15):3574-3575. doi: 10.3969/j.issn.0517-6611.2006.15.005
BISWALl D R, SINGH R P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydr Polym, 2004,57(4):379-387. doi: 10.1016/j.carbpol.2004.04.020
WANG Y, WANG D, TAN M H, JIANG B, ZHENG J T, TSUBAKI N, WU M B. Monodispersed hollow SO3 H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid[J]. ACS Appl Mater Interfaces, 2015,7(48):26767-26775. doi: 10.1021/acsami.5b08797
WANG Y T, FANG Z, YANG X X. Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid[J]. App Energy, 2017,204:702-714. doi: 10.1016/j.apenergy.2017.07.060
YU J T, DEHKHODA A M, ELLIS N. Development of biochar-based catalyst for transesterification of canola oil[J]. Energy Fuels, 2010,25(1):337-344.
LIU H, CHEN J Z, CHEN L M, XU Y S, GUO X H, FANG D Y. Carbon nanotube-based solid Sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification[J]. ACS Sustainable Chem Eng, 2016,4(6):3140-3150. doi: 10.1021/acssuschemeng.6b00156
ZONG M H, DUAN Z Q, LOU W Y, SMITH T J, WU H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel[J]. Green Chem, 2007,9(5):434-437. doi: 10.1039/b615447f
EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141(2):347-354.
ZHU Ye-nan, MA Tian-lin, DING Jian-fei. Preparation of H2SO4/MCM-41 catalyst and their application in dehydration of glycerol into acrolein[J]. Chin J Synth Chem, 2016,24(1):67-70.
SHU Q, TANG G Q, LESMANA H, ZOU L X, XIONG D L. Preparation, characterization and application of a novel solid Brønsted acid catalyst SO42-/La3+/C for biodiesel production via esterification of oleic acid and methanol[J]. Renewable Energy, 2018,119:253-261. doi: 10.1016/j.renene.2017.12.013
MALINS K, KAMPARS V, BRINKS J, NEIBOLTE L, MURNIEKS R. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation[J]. App Catal B:Environ, 2015,176:553-558.
Xiaoning TANG , Junnan LIU , Xingfu YANG , Jie LEI , Qiuyang LUO , Shu XIA , An XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191
Kuaibing Wang , Feifei Mao , Weihua Zhang , Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042
Lisha LEI , Wei YONG , Yiting CHENG , Yibo WANG , Wenchao HUANG , Junhuan ZHAO , Zhongjie ZHAI , Yangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202
Qiaoqiao BAI , Anqi ZHOU , Xiaowei LI , Tang LIU , Song LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128
Hao XU , Ruopeng LI , Peixia YANG , Anmin LIU , Jie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302
.
Hui Wang , Abdelkader Labidi , Menghan Ren , Feroz Shaik , Chuanyi Wang . 微观结构调控的g-C3N4在光催化NO转化中的最新进展:吸附/活化位点的关键作用. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-. doi: 10.1016/j.actphy.2024.100039
Juan WANG , Zhongqiu WANG , Qin SHANG , Guohong WANG , Jinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102
. . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.
Shijie Li , Ke Rong , Xiaoqin Wang , Chuqi Shen , Fang Yang , Qinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-Scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-. doi: 10.3866/PKU.WHXB202403005
Haitang WANG , Yanni LING , Xiaqing MA , Yuxin CHEN , Rui ZHANG , Keyi WANG , Ying ZHANG , Wenmin WANG . Construction, crystal structures, and biological activities of two LnⅢ3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188
Xiaowei TANG , Shiquan XIAO , Jingwen SUN , Yu ZHU , Xiaoting CHEN , Haiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173
Jianfeng Yan , Yating Xiao , Xin Zuo , Caixia Lin , Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005
Zhibei Qu , Changxin Wang , Lei Li , Jiaze Li , Jun Zhang . Organoid-on-a-Chip for Drug Screening and the Inherent Biochemistry Principles. University Chemistry, 2024, 39(7): 278-286. doi: 10.3866/PKU.DXHX202311039
Dan Li , Hui Xin , Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046
Yang Liu , Peng Chen , Lei Liu . Chemistry “101 Plan”: Design and Construction of Chemical Biology Textbook. University Chemistry, 2024, 39(10): 45-51. doi: 10.12461/PKU.DXHX202407085
Tianyu Feng , Guifang Jia , Peng Zou , Jun Huang , Zhanxia Lü , Zhen Gao , Chu Wang . Construction of the Chemistry Biology Experiment Course in the Chemistry “101 Program”. University Chemistry, 2024, 39(10): 69-77. doi: 10.12461/PKU.DXHX202409002
Zhaoxin LI , Ruibo WEI , Min ZHANG , Zefeng WANG , Jing ZHENG , Jianbo LIU . Advancements in the construction of inorganic protocells and their cell mimic and bio-catalytical applications. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2286-2302. doi: 10.11862/CJIC.20240235
Jinghan ZHANG , Guanying CHEN . Progress in the application of rare-earth-doped upconversion nanoprobes in biological detection. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2335-2355. doi: 10.11862/CJIC.20240249
Lina Feng , Guoyu Jiang , Xiaoxia Jian , Jianguo Wang . Application of Organic Radical Materials in Biomedicine. University Chemistry, 2025, 40(4): 253-260. doi: 10.12461/PKU.DXHX202405171
(a): Fe-CMC-SO3H; (b): Fe-CMC-SO3H; (c): C; (d): O; (e): S; (f): Fe
reaction conditions: reaction time is 6 h, reaction temperature is 70 ℃, the molar ratio of oleic acid to methanol is 1:10, mass ratio of catalyst to oleic acid is 7.5%
reaction conditions: reaction time is 6 h, reaction temperature is 70 ℃, the molar ratio of oleic acid to methanol is 1:10, mass ratio of catalyst to oleic acid is 7.5%