Citation: WU Hao, FAN Ming-ming, ZHANG Ping-bo, JIANG Ping-ping. Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel[J]. Journal of Fuel Chemistry and Technology, ;2019, 47(1): 60-65. shu

Preparation and application of a novel carbon-based solid acid with Brønsted-Lewis double acid sites for synthesis of biodiesel

  • Corresponding author: ZHANG Ping-bo, pingbozhang@126.com
  • Received Date: 9 July 2018
    Revised Date: 26 November 2018

    Fund Project: the Natural Science Foundation of Jiangsu Province BK20130123the National Natural Science Foundation of China 21306063The project was supported by the National Natural Science Foundation of China (21306063) and the Natural Science Foundation of Jiangsu Province (BK20130123)

Figures(7)

  • A novel carbon-based solid acid catalyst was prepared with chelates of sodium carboxymethyl cellulose and iron sulfate as a carbon precursor, and with concentrated sulfuric acid as sulfonation agent. The physical and chemical properties of prepared catalyst were characterized by Fourier transform infrared (FT-IR), X-ray diffraction (XRD), pyridine-FTIR, scanning electron microscopy (SEM), thermogravimetric analysis (TGA) and energy dispersive spectroscopy (EDS). It was used to catalyze the esterification of oleic acid with methanol to prepare biodiesel, and the influence of different reaction conditions on the conversion of oleic acid was investigated. The results show that the catalyst is a solid acid one with both Lewis and Brønsted acid sites. The conversion of oleic acid reaches 96.8% at the reaction temperature of 70℃, the reaction time of 6 h, the molar ratio of oleic acid to methanol of 1:10, and the catalyst dosages of 7.5% based on oleic acid. In addition, the stability performance of the catalyst tested indicates that the catalyst has a good reusability and hydrophobicity.
  • 加载中
    1. [1]

      HÖÖK M, TANG X. Depletion of fossil fuels and anthropogenic climate change:A review[J]. Energy Policy, 2013,52:797-809. doi: 10.1016/j.enpol.2012.10.046

    2. [2]

      WILSON K, LEE A F. Rational design of heterogeneous catalysts for biodiesel synthesis[J]. Catal Sci Technol, 2012,2(5):884-897. doi: 10.1039/c2cy20038d

    3. [3]

      LEUNG D Y C, WU X, LEUNG M K H. A review on biodiesel production using catalyzed transesterification[J]. App Energy, 2010,87(4):1083-1095. doi: 10.1016/j.apenergy.2009.10.006

    4. [4]

      ATABANI A E, SILITONGA A S, BADRUDDIN I A, MAHLIA T M I, MEKHILEF M S. A comprehensive review on biodiesel as an alternative energy resource and its characteristics[J]. Renewable Sustainable Energy Rev, 2012,16(4):2070-2093. doi: 10.1016/j.rser.2012.01.003

    5. [5]

      PINZI S, GARCIA I L, LOPEZ-GIMENEZ F J, LUQUE DE CASTRO M D, DORADO G, DORADO M P. The ideal vegetable oil-based biodiesel composition:A review of social, economical and technical implications[J]. Energy Fuels, 2009,23(5):2325-2341. doi: 10.1021/ef801098a

    6. [6]

      DEMIRBAS A. Progress and recent trends in biodiesel fuels[J]. Energy Convers Manage, 2009,50(1):14-34. doi: 10.1016/j.enconman.2008.09.001

    7. [7]

      SU F, GUO Y. Advancements in solid acid catalysts for biodiesel production[J]. Green Chem, 2014,16(6):2934-2957. doi: 10.1039/C3GC42333F

    8. [8]

      WANG Hong-hong, LIU Li-jun, GONG Shu-wen. Esterification of oleic acid to biodiesel over a 12-phosphotungstic acid-based solid catalyst[J]. J Fuel Chem Technol, 2017,45(3):303-310. doi: 10.3969/j.issn.0253-2409.2017.03.007 

    9. [9]

      SHIBASAKI-KITAKAWA N, HONDA H, KURIBAYASHI H, TODA T, FUKUMURA T, YONEMOTO T. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst[J]. Bioresour Technol, 2007,98(2):416-421. doi: 10.1016/j.biortech.2005.12.010

    10. [10]

      MARGOLESE D, MELERO J A, CHRISTIANSEN S C, CHMELKA B F, STUCKY G D. Direct syntheses of ordered SBA-15 mesoporous silica containing sulfonic acid groups[J]. Chem Mater, 2000,12(8):2448-2459. doi: 10.1021/cm0010304

    11. [11]

      LI Meng-tian, JIANG Ping-ping, ZHANG Ping-bo. Catalytic synthesis of methyl oleate by carbonbased solid acid[J]. Fine Chem, 2018,35(4):638-644.  

    12. [12]

      LOU Wen-yong, CAI Jun, DUAN Zhang-qun, ZONG Min-hua. Preparation of cellulose-derived solid acid catalyst and its use for production of biodiesel from waste oils with high acid value[J]. Chin J Catal, 2011,32(5):1755-1761.  

    13. [13]

      ZENG D L, LIU S L, GONG W J, WANG G H, QIU J H, CHEN H X. Synthesis, characterization and acid catalysis of solid acid from peanut shell[J]. Appl Catal A:Gen, 2014,469:284-289. doi: 10.1016/j.apcata.2013.09.038

    14. [14]

      SHEN Zhong-quan, YU Xi-meng, CHEN Ji-zhong. Esterification reactions catalyzed by novel sulfonated carbon material derived from bamboo[J]. J Chem Ind Eng, 2015,66(8):3072-3077.  

    15. [15]

      NIU Sheng-yang, SHAO Feng-ge. Application progress in the carboxymethyl cellulose sodium[J]. J Anhui Agri Sci, 2006,34(15):3574-3575. doi: 10.3969/j.issn.0517-6611.2006.15.005

    16. [16]

      BISWALl D R, SINGH R P. Characterisation of carboxymethyl cellulose and polyacrylamide graft copolymer[J]. Carbohydr Polym, 2004,57(4):379-387. doi: 10.1016/j.carbpol.2004.04.020

    17. [17]

      WANG Y, WANG D, TAN M H, JIANG B, ZHENG J T, TSUBAKI N, WU M B. Monodispersed hollow SO3 H-functionalized carbon/silica as efficient solid acid catalyst for esterification of oleic acid[J]. ACS Appl Mater Interfaces, 2015,7(48):26767-26775. doi: 10.1021/acsami.5b08797

    18. [18]

      WANG Y T, FANG Z, YANG X X. Biodiesel production from high acid value oils with a highly active and stable bifunctional magnetic acid[J]. App Energy, 2017,204:702-714. doi: 10.1016/j.apenergy.2017.07.060

    19. [19]

      YU J T, DEHKHODA A M, ELLIS N. Development of biochar-based catalyst for transesterification of canola oil[J]. Energy Fuels, 2010,25(1):337-344.  

    20. [20]

      LIU H, CHEN J Z, CHEN L M, XU Y S, GUO X H, FANG D Y. Carbon nanotube-based solid Sulfonic acids as catalysts for production of fatty acid methyl ester via transesterification and esterification[J]. ACS Sustainable Chem Eng, 2016,4(6):3140-3150. doi: 10.1021/acssuschemeng.6b00156

    21. [21]

      ZONG M H, DUAN Z Q, LOU W Y, SMITH T J, WU H. Preparation of a sugar catalyst and its use for highly efficient production of biodiesel[J]. Green Chem, 2007,9(5):434-437. doi: 10.1039/b615447f

    22. [22]

      EMEIS C A. Determination of integrated molar extinction coefficients for infrared absorption bands of pyridine adsorbed on solid acid catalysts[J]. J Catal, 1993,141(2):347-354.  

    23. [23]

      ZHU Ye-nan, MA Tian-lin, DING Jian-fei. Preparation of H2SO4/MCM-41 catalyst and their application in dehydration of glycerol into acrolein[J]. Chin J Synth Chem, 2016,24(1):67-70.  

    24. [24]

      SHU Q, TANG G Q, LESMANA H, ZOU L X, XIONG D L. Preparation, characterization and application of a novel solid Brønsted acid catalyst SO42-/La3+/C for biodiesel production via esterification of oleic acid and methanol[J]. Renewable Energy, 2018,119:253-261. doi: 10.1016/j.renene.2017.12.013

    25. [25]

      MALINS K, KAMPARS V, BRINKS J, NEIBOLTE L, MURNIEKS R. Synthesis of activated carbon based heterogenous acid catalyst for biodiesel preparation[J]. App Catal B:Environ, 2015,176:553-558.  

  • 加载中
    1. [1]

      Xiaoning TANGJunnan LIUXingfu YANGJie LEIQiuyang LUOShu XIAAn XUE . Effect of sodium alginate-sodium carboxymethylcellulose gel layer on the stability of Zn anodes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1452-1460. doi: 10.11862/CJIC.20240191

    2. [2]

      Yan'e LIUShengli JIAYifan JIANGQinghua ZHAOYi LIXinshu CHANG . MoO3/cellulose derived carbon aerogel: Fabrication and performance as cathode for lithium-sulfur battery. Chinese Journal of Inorganic Chemistry, 2025, 41(8): 1565-1573. doi: 10.11862/CJIC.20250054

    3. [3]

      Kuaibing Wang Feifei Mao Weihua Zhang Bo Lv . Design and Practice of a Comprehensive Teaching Experiment for Preparing Biomass Carbon Dots from Rice Husk. University Chemistry, 2025, 40(5): 342-350. doi: 10.12461/PKU.DXHX202407042

    4. [4]

      Lisha LEIWei YONGYiting CHENGYibo WANGWenchao HUANGJunhuan ZHAOZhongjie ZHAIYangbin DING . Application of regenerated cellulose and reduced graphene oxide film in synergistic power generation from moisture electricity generation and Mg-air batteries. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1151-1161. doi: 10.11862/CJIC.20240202

    5. [5]

      Qiaoqiao BAIAnqi ZHOUXiaowei LITang LIUSong LIU . Construction of pressure-temperature dual-functional flexible sensors and applications in biomedicine. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2259-2274. doi: 10.11862/CJIC.20240128

    6. [6]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    7. [7]

      Bin SUNHeyan JIANG . Glucose-modified bis-Schiff bases: Synthesis and bio-activities in Alzheimer′s disease therapy. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1338-1350. doi: 10.11862/CJIC.20240428

    8. [8]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    9. [9]

      Yihui Song Shangshang Qin Kai Wu Chengyun Jin Bin Yu . 生物化学在高水平创新型药学人才培养中的交叉融合应用——以去甲基化酶LSD1抑制剂的活性评价为例. University Chemistry, 2025, 40(6): 341-352. doi: 10.12461/PKU.DXHX202406018

    10. [10]

      Mengyang LIHao XUZhonghao NIUChunhua GONGWeihui ZHONGJingli XIE . Highly effective catalytic synthesis of β-amino alcohols by using viologen-polyoxometalate hybrid materials. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1294-1300. doi: 10.11862/CJIC.20250080

    11. [11]

      Qianli MaTianbing SongTianle HeXirong ZhangHuanming Xiong . Sulfur-doped carbon dots: a novel bifunctional electrolyte additive for high-performance aqueous zinc-ion batteries. Acta Physico-Chimica Sinica, 2025, 41(9): 100106-0. doi: 10.1016/j.actphy.2025.100106

    12. [12]

      南开大学师唯/华北电力大学(保定)刘景维:二维配位聚合物中有序的亲锂冠醚位点用于无枝晶锂沉积

      . CCS Chemistry, 2025, 7(0): -.

    13. [13]

      Hui WangAbdelkader LabidiMenghan RenFeroz ShaikChuanyi Wang . Recent Progress of Microstructure-Regulated g-C3N4 in Photocatalytic NO Conversion: The Pivotal Roles of Adsorption/Activation Sites. Acta Physico-Chimica Sinica, 2025, 41(5): 100039-0. doi: 10.1016/j.actphy.2024.100039

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Yichang Liu Li An Dan Qu Zaicheng Sun . “双碳”背景下的综合设计实验——以PbCrO4催化甲基蓝的光降解速率常数测定为例. University Chemistry, 2025, 40(6): 222-229. doi: 10.12461/PKU.DXHX202407105

    16. [16]

      . . Chinese Journal of Inorganic Chemistry, 2024, 40(12): 0-0.

    17. [17]

      Shijie LiKe RongXiaoqin WangChuqi ShenFang YangQinghong Zhang . Design of Carbon Quantum Dots/CdS/Ta3N5 S-scheme Heterojunction Nanofibers for Efficient Photocatalytic Antibiotic Removal. Acta Physico-Chimica Sinica, 2024, 40(12): 2403005-0. doi: 10.3866/PKU.WHXB202403005

    18. [18]

      Haitang WANGYanni LINGXiaqing MAYuxin CHENRui ZHANGKeyi WANGYing ZHANGWenmin WANG . Construction, crystal structures, and biological activities of two Ln3 complexes. Chinese Journal of Inorganic Chemistry, 2024, 40(8): 1474-1482. doi: 10.11862/CJIC.20240188

    19. [19]

      Xiaowei TANGShiquan XIAOJingwen SUNYu ZHUXiaoting CHENHaiyan ZHANG . A zinc complex for the detection of anthrax biomarker. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1850-1860. doi: 10.11862/CJIC.20240173

    20. [20]

      Jianfeng Yan Yating Xiao Xin Zuo Caixia Lin Yaofeng Yuan . Comprehensive Chemistry Experimental Design of Ferrocenylphenyl Derivatives. University Chemistry, 2024, 39(4): 329-337. doi: 10.3866/PKU.DXHX202310005

Metrics
  • PDF Downloads(13)
  • Abstract views(2788)
  • HTML views(260)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return