Citation: ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1423-1429. shu

Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction

  • Corresponding author: ZHAO Peng, 411296849@qq.com
  • Received Date: 12 June 2018
    Revised Date: 10 August 2018

    Fund Project: NSFC-Joint Funds for Coal Base Low Carbon of Shanxi Province of China U1610221the National Key R & D Program of China 2016YFB0600303The project was supported by the National Key R & D Program of China (2016YFB0600303) and NSFC-Joint Funds for Coal Base Low Carbon of Shanxi Province of China(U1610221)

Figures(7)

  • Reaction behavior of Naomaohu (NMH) coal in tetralin was carried out under atmosphere of H2. Hydrogen transfer in complex multi-phase system of direct coal liquefaction were discussed. The influence of phase transition process of iron-based catalyst on liquefaction performance was investigated using X-ray diffraction, saturate magnetization and scanning electron microscope. The results show that NMH coal presents good liquefaction performance at 420℃ and 17 MPa. Active phase Fe7S8 plays catalytic role during initial reaction and changes into nonactive phase-Fe9S10 and FeS later. High hydrogenation activity of catalyst and long residence time are beneficial to hydrogenation of preasphaltene and asphaltene into light oil. Catalyst promotes the activation of H2 transferring to coal pyrolysis products and solvent. Catalyst promotes the hydrogen in solvent to transfer to coal pyrolysis products as well. The contribution to activated hydrogen from solvent is twice as that from H2 in the condition of the experiment. Hydrogen transferring from H2 to solvent changes little with temperature, pressure and time. Activated hydrogen from H2 and solvent is proportional to the conversion of coal and asphaltene to oil and gas.
  • 加载中
    1. [1]

      LIU Zhen-yu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chem Ind Eng Prog, 2010,29(2):193-195.  

    2. [2]

      ZIELKE C W, STRUCK R T, EVANS J M, COSTANZA C P, GORIN E. Molten zinc halide catalysts for hydrocracking of coal extract and coal[J]. Ind Eng Chem Process Des Dev, 1966,5(2):158-164. doi: 10.1021/i260018a009

    3. [3]

      CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind Eng Chem Process Des Dev, 1967,6(2):166-173. doi: 10.1021/i260022a003

    4. [4]

      IKENAGA N, KAN-NAN S, SAKODA T, SUZUKI T. Coal hydroliquefaction using highly dispersed catalyst precursors[J]. Catal Today, 1997,39(1/2):99-109.  

    5. [5]

      GODO M, SAITO M, ISHIHAVE A. Elucidation of coal liquefaction mechanisms using a tritiated molecular hydrogen in the presence and absence of H2S[J]. Fuel, 1998,77(9/10):947-952.  

    6. [6]

      MCMILLEN D F, MALHOTRA R, HUM G P, CHANG S J. Hydrogen-transfer-promoted bond scission initiated by coal fragments[J]. Energy Fuels, 1987,1(2):193-198.  

    7. [7]

      MCMILLEN D F, MALHOTRA R, CHANG S J, OGIER W C, NIGENDA S E. Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems[J]. Fuel, 1987,66(12):1611-1620. doi: 10.1016/0016-2361(87)90351-6

    8. [8]

      MALHOTRA R, MCMILLEN D F, TSE D S, LORENTS D C, RUOFF R S. Hydrogen-transfer reactions catalyzed by fullerenes[J]. Energy Fuels, 1993,7(5):685-686. doi: 10.1021/ef00041a020

    9. [9]

      VERNON L W. Free radical chemistry of coal liquefaction:Role of molecular hydrogen[J]. Fuel, 1980,59(2):102-106. doi: 10.1016/0016-2361(80)90049-6

    10. [10]

      ZONG Z M, WEI X Y. Effects of molecular hydrogen and hydrogen donor additives on 1, 2-di (1-naphthyl) ethane thermolysis[J]. Fuel Process Technol, 1994,41(1):79-85. doi: 10.1016/0378-3820(94)90061-2

    11. [11]

      KUHLMANN E J, JUNG D Y, GUPTILL R P, DYKE C A, ZANG H K. Coal liquefaction using a hydrogenated creosote oil solvent:H-atom transfer from hydrogen donor components in the solvent[J]. Fuel, 1985,64(11):1552-1557. doi: 10.1016/0016-2361(85)90372-2

    12. [12]

      DEPEYRE D, URHAN M, FLICOTEAUX C. Pyrolysis of hydrocarbon mixtures characteristic of coal:Application to dibenzyl mixture[J]. Fuel, 1985,64(12):1655-1661. doi: 10.1016/0016-2361(85)90389-8

    13. [13]

      CRONAUER D C, SHAH Y T, RUBERTO R G. Mechanism and kinetics of selected hydrogen transfer reactions typical of coal Liquefaction[J]. Ind Eng Chem Process Des Dev, 1978,17281. doi: 10.1021/i260067a013

    14. [14]

      LI X, HU S X, JIN L, HU H Q. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J]. Energy Fuels, 2008,22(2):1126-1129. doi: 10.1021/ef7006062

    15. [15]

      WANG Jian-you. Characteristics of catalytic-hydrogenation in direct Shenhua coal liquefaction[D]. Dalian: Dalian University of Technology, 2013: 81-85.

    16. [16]

      SHU Ge-ping. Direct Coal Liquefaction[M]. Beijing:Coal Industry Press, 2003:91-95.

    17. [17]

      SHI Shi-dong. Engineering Fundamentals of Direct Coal Liquefaction[M]. Beijing:Chemical Industry Press, 2012:224-231.

    18. [18]

      KOTANIGAWA T, YOKOYAMA S, YAMAMOTO M, MAEKAWA Y. Catalytic activities of sulphate and sulphide in sulphur-promoted iron oxide catalyst for coal liquefaction[J]. Fuel, 1989,68:618-621. doi: 10.1016/0016-2361(89)90161-0

  • 加载中
    1. [1]

      Xueqi Yang Juntao Zhao Jiawei Ye Desen Zhou Tingmin Di Jun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-. doi: 10.1016/j.actphy.2025.100074

    2. [2]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    5. [5]

      Xuejie Wang Guoqing Cui Congkai Wang Yang Yang Guiyuan Jiang Chunming Xu . 碳基催化剂催化有机液体氢载体脱氢研究进展. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-. doi: 10.1016/j.actphy.2024.100044

    6. [6]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    7. [7]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    8. [8]

      Jianyin He Liuyun Chen Xinling Xie Zuzeng Qin Hongbing Ji Tongming Su . ZnCoP/CdLa2S4肖特基异质结的构建促进光催化产氢. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-. doi: 10.3866/PKU.WHXB202404030

    9. [9]

      Wenxiu Yang Jinfeng Zhang Quanlong Xu Yun Yang Lijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-. doi: 10.3866/PKU.WHXB202312014

    10. [10]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    11. [11]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

    12. [12]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    13. [13]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    14. [14]

      Juan WANGZhongqiu WANGQin SHANGGuohong WANGJinmao LI . NiS and Pt as dual co-catalysts for the enhanced photocatalytic H2 production activity of BaTiO3 nanofibers. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1719-1730. doi: 10.11862/CJIC.20240102

    15. [15]

      Wenjiang LIPingli GUANRui YUYuansheng CHENGXianwen WEI . C60-MoP-C nanoflowers van der Waals heterojunctions and its electrocatalytic hydrogen evolution performance. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 771-781. doi: 10.11862/CJIC.20230289

    16. [16]

      Bo YANGGongxuan LÜJiantai MA . Nickel phosphide modified phosphorus doped gallium oxide for visible light photocatalytic water splitting to hydrogen. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 736-750. doi: 10.11862/CJIC.20230346

    17. [17]

      Asif Hassan Raza Shumail Farhan Zhixian Yu Yan Wu . 用于高效制氢的双S型ZnS/ZnO/CdS异质结构光催化剂. Acta Physico-Chimica Sinica, 2024, 40(11): 2406020-. doi: 10.3866/PKU.WHXB202406020

    18. [18]

      Zhengyu Zhou Huiqin Yao Youlin Wu Teng Li Noritatsu Tsubaki Zhiliang Jin . Synergistic Effect of Cu-Graphdiyne/Transition Bimetallic Tungstate Formed S-Scheme Heterojunction for Enhanced Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(10): 2312010-. doi: 10.3866/PKU.WHXB202312010

    19. [19]

      Qingqing SHENXiangbowen DUKaicheng QIANZhikang JINZheng FANGTong WEIRenhong LI . Self-supporting Cu/α-FeOOH/foam nickel composite catalyst for efficient hydrogen production by coupling methanol oxidation and water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(10): 1953-1964. doi: 10.11862/CJIC.20240028

    20. [20]

      Shuang Yang Qun Wang Caiqin Miao Ziqi Geng Xinran Li Yang Li Xiaohong Wu . Ideological and Political Education Design for Research-Oriented Experimental Course of Highly Efficient Hydrogen Production from Water Electrolysis in Aerospace Perspective. University Chemistry, 2024, 39(11): 269-277. doi: 10.12461/PKU.DXHX202403044

Metrics
  • PDF Downloads(6)
  • Abstract views(985)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return