Citation: ZHAO Peng, LI Jun-fang, WU Yan, MAO Xue-feng, ZHANG Xiao-jing, CHANG Qiu-lian. Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(12): 1423-1429. shu

Reaction and hydrogen transfer in complex multi-phase system during coal hydro-liquefaction

  • Corresponding author: ZHAO Peng, 411296849@qq.com
  • Received Date: 12 June 2018
    Revised Date: 10 August 2018

    Fund Project: NSFC-Joint Funds for Coal Base Low Carbon of Shanxi Province of China U1610221the National Key R & D Program of China 2016YFB0600303The project was supported by the National Key R & D Program of China (2016YFB0600303) and NSFC-Joint Funds for Coal Base Low Carbon of Shanxi Province of China(U1610221)

Figures(7)

  • Reaction behavior of Naomaohu (NMH) coal in tetralin was carried out under atmosphere of H2. Hydrogen transfer in complex multi-phase system of direct coal liquefaction were discussed. The influence of phase transition process of iron-based catalyst on liquefaction performance was investigated using X-ray diffraction, saturate magnetization and scanning electron microscope. The results show that NMH coal presents good liquefaction performance at 420℃ and 17 MPa. Active phase Fe7S8 plays catalytic role during initial reaction and changes into nonactive phase-Fe9S10 and FeS later. High hydrogenation activity of catalyst and long residence time are beneficial to hydrogenation of preasphaltene and asphaltene into light oil. Catalyst promotes the activation of H2 transferring to coal pyrolysis products and solvent. Catalyst promotes the hydrogen in solvent to transfer to coal pyrolysis products as well. The contribution to activated hydrogen from solvent is twice as that from H2 in the condition of the experiment. Hydrogen transferring from H2 to solvent changes little with temperature, pressure and time. Activated hydrogen from H2 and solvent is proportional to the conversion of coal and asphaltene to oil and gas.
  • 加载中
    1. [1]

      LIU Zhen-yu. Principal chemistry and chemical engineering challenges in direct coal liquefaction technology[J]. Chem Ind Eng Prog, 2010,29(2):193-195.  

    2. [2]

      ZIELKE C W, STRUCK R T, EVANS J M, COSTANZA C P, GORIN E. Molten zinc halide catalysts for hydrocracking of coal extract and coal[J]. Ind Eng Chem Process Des Dev, 1966,5(2):158-164. doi: 10.1021/i260018a009

    3. [3]

      CURRAN G P, STRUCK R T, GORIN E. Mechanism of hydrogen-transfer process to coal and coal extract[J]. Ind Eng Chem Process Des Dev, 1967,6(2):166-173. doi: 10.1021/i260022a003

    4. [4]

      IKENAGA N, KAN-NAN S, SAKODA T, SUZUKI T. Coal hydroliquefaction using highly dispersed catalyst precursors[J]. Catal Today, 1997,39(1/2):99-109.  

    5. [5]

      GODO M, SAITO M, ISHIHAVE A. Elucidation of coal liquefaction mechanisms using a tritiated molecular hydrogen in the presence and absence of H2S[J]. Fuel, 1998,77(9/10):947-952.  

    6. [6]

      MCMILLEN D F, MALHOTRA R, HUM G P, CHANG S J. Hydrogen-transfer-promoted bond scission initiated by coal fragments[J]. Energy Fuels, 1987,1(2):193-198.  

    7. [7]

      MCMILLEN D F, MALHOTRA R, CHANG S J, OGIER W C, NIGENDA S E. Mechanisms of hydrogen transfer and bond scission of strongly bonded coal structures in donor-solvent systems[J]. Fuel, 1987,66(12):1611-1620. doi: 10.1016/0016-2361(87)90351-6

    8. [8]

      MALHOTRA R, MCMILLEN D F, TSE D S, LORENTS D C, RUOFF R S. Hydrogen-transfer reactions catalyzed by fullerenes[J]. Energy Fuels, 1993,7(5):685-686. doi: 10.1021/ef00041a020

    9. [9]

      VERNON L W. Free radical chemistry of coal liquefaction:Role of molecular hydrogen[J]. Fuel, 1980,59(2):102-106. doi: 10.1016/0016-2361(80)90049-6

    10. [10]

      ZONG Z M, WEI X Y. Effects of molecular hydrogen and hydrogen donor additives on 1, 2-di (1-naphthyl) ethane thermolysis[J]. Fuel Process Technol, 1994,41(1):79-85. doi: 10.1016/0378-3820(94)90061-2

    11. [11]

      KUHLMANN E J, JUNG D Y, GUPTILL R P, DYKE C A, ZANG H K. Coal liquefaction using a hydrogenated creosote oil solvent:H-atom transfer from hydrogen donor components in the solvent[J]. Fuel, 1985,64(11):1552-1557. doi: 10.1016/0016-2361(85)90372-2

    12. [12]

      DEPEYRE D, URHAN M, FLICOTEAUX C. Pyrolysis of hydrocarbon mixtures characteristic of coal:Application to dibenzyl mixture[J]. Fuel, 1985,64(12):1655-1661. doi: 10.1016/0016-2361(85)90389-8

    13. [13]

      CRONAUER D C, SHAH Y T, RUBERTO R G. Mechanism and kinetics of selected hydrogen transfer reactions typical of coal Liquefaction[J]. Ind Eng Chem Process Des Dev, 1978,17281. doi: 10.1021/i260067a013

    14. [14]

      LI X, HU S X, JIN L, HU H Q. Role of iron-based catalyst and hydrogen transfer in direct coal liquefaction[J]. Energy Fuels, 2008,22(2):1126-1129. doi: 10.1021/ef7006062

    15. [15]

      WANG Jian-you. Characteristics of catalytic-hydrogenation in direct Shenhua coal liquefaction[D]. Dalian: Dalian University of Technology, 2013: 81-85.

    16. [16]

      SHU Ge-ping. Direct Coal Liquefaction[M]. Beijing:Coal Industry Press, 2003:91-95.

    17. [17]

      SHI Shi-dong. Engineering Fundamentals of Direct Coal Liquefaction[M]. Beijing:Chemical Industry Press, 2012:224-231.

    18. [18]

      KOTANIGAWA T, YOKOYAMA S, YAMAMOTO M, MAEKAWA Y. Catalytic activities of sulphate and sulphide in sulphur-promoted iron oxide catalyst for coal liquefaction[J]. Fuel, 1989,68:618-621. doi: 10.1016/0016-2361(89)90161-0

  • 加载中
    1. [1]

      Xueqi YangJuntao ZhaoJiawei YeDesen ZhouTingmin DiJun Zhang . 调节NNU-55(Fe)的d带中心以增强CO2吸附和光催化活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100074-0. doi: 10.1016/j.actphy.2025.100074

    2. [2]

      Yuanqing WangYusong PanHongwu ZhuYanlei XiangRong HanRun HuangChao DuChengling Pan . Enhanced Catalytic Activity of Bi2WO6 for Organic Pollutants Degradation under the Synergism between Advanced Oxidative Processes and Visible Light Irradiation. Acta Physico-Chimica Sinica, 2024, 40(4): 2304050-0. doi: 10.3866/PKU.WHXB202304050

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Linjie ZHUXufeng LIU . Synthesis, characterization and electrocatalytic hydrogen evolution of two di-iron complexes containing a phosphine ligand with a pendant amine. Chinese Journal of Inorganic Chemistry, 2025, 41(5): 939-947. doi: 10.11862/CJIC.20240416

    5. [5]

      Jianan HongChenyu XuYan LiuChangqi LiMenglin WangYanwei Zhang . Decoding the interfacial competition between hydrogen evolution and CO2 reduction via edge-active-site modulation in photothermal catalysis. Acta Physico-Chimica Sinica, 2025, 41(9): 100099-0. doi: 10.1016/j.actphy.2025.100099

    6. [6]

      Feifei YangWei ZhouChaoran YangTianyu ZhangYanqiang Huang . Enhanced Methanol Selectivity in CO2 Hydrogenation by Decoration of K on MoS2 Catalyst. Acta Physico-Chimica Sinica, 2024, 40(7): 2308017-0. doi: 10.3866/PKU.WHXB202308017

    7. [7]

      Liuyun ChenWenju WangTairong LuXuan LuoXinling XieKelin HuangShanli QinTongming SuZuzeng QinHongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-0. doi: 10.1016/j.actphy.2025.100054

    8. [8]

      Yongqing XuYuyao YangMengna WuXiaoxiao YangXuan BieShiyu ZhangQinghai LiYanguo ZhangChenwei ZhangRobert E. PrzekopBogna SztorchDariusz BrzakalskiHui Zhou . Review on Using Molybdenum Carbides for the Thermal Catalysis of CO2 Hydrogenation to Produce High-Value-Added Chemicals and Fuels. Acta Physico-Chimica Sinica, 2024, 40(4): 2304003-0. doi: 10.3866/PKU.WHXB202304003

    9. [9]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    10. [10]

      Hailian TangSiyuan ChenQiaoyun LiuGuoyi BaiBotao QiaoLiu Fei . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 2408004-0. doi: 10.3866/PKU.WHXB202408004

    11. [11]

      Kai CHENFengshun WUShun XIAOJinbao ZHANGLihua ZHU . PtRu/nitrogen-doped carbon for electrocatalytic methanol oxidation and hydrogen evolution by water electrolysis. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1357-1367. doi: 10.11862/CJIC.20230350

    12. [12]

      Yue Zhao Yanfei Li Tao Xiong . Copper Hydride-Catalyzed Nucleophilic Additions of Unsaturated Hydrocarbons to Aldehydes and Ketones. University Chemistry, 2024, 39(4): 280-285. doi: 10.3866/PKU.DXHX202309001

    13. [13]

      Linjie ZHUXufeng LIU . Electrocatalytic hydrogen evolution performance of tetra-iron complexes with bridging diphosphine ligands. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 321-328. doi: 10.11862/CJIC.20240207

    14. [14]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    15. [15]

      Yifan ZHAOQiyun MAOMeijing GUOGuoying ZHANGTongliang HU . Z-scheme bismuth-based multi-site heterojunction: Synthesis and hydrogen production from photocatalytic hydrogen production. Chinese Journal of Inorganic Chemistry, 2025, 41(7): 1318-1330. doi: 10.11862/CJIC.20250001

    16. [16]

      Ran YuChen HuRuili GuoRuonan LiuLixing XiaCenyu YangJianglan Shui . Catalytic Effect of H3PW12O40 on Hydrogen Storage of MgH2. Acta Physico-Chimica Sinica, 2025, 41(1): 100001-0. doi: 10.3866/PKU.WHXB202308032

    17. [17]

      Haitao WangLianglang YuJizhou JiangArramelJing Zou . S-Doping of the N-Sites of g-C3N4 to Enhance Photocatalytic H2 Evolution Activity. Acta Physico-Chimica Sinica, 2024, 40(5): 2305047-0. doi: 10.3866/PKU.WHXB202305047

    18. [18]

      Wenxiu YangJinfeng ZhangQuanlong XuYun YangLijie Zhang . Bimetallic AuCu Alloy Decorated Covalent Organic Frameworks for Efficient Photocatalytic Hydrogen Production. Acta Physico-Chimica Sinica, 2024, 40(10): 2312014-0. doi: 10.3866/PKU.WHXB202312014

    19. [19]

      Yuqiong LiBing LanBin GuanChunlong DaiFan ZhangZifeng Lin . Molten Salt Derived Mo2CTx MXene with Excellent Catalytic Performance for Hydrogen Evolution Reaction. Acta Physico-Chimica Sinica, 2024, 40(9): 2306031-0. doi: 10.3866/PKU.WHXB202306031

    20. [20]

      Jianyin HeLiuyun ChenXinling XieZuzeng QinHongbing JiTongming Su . Construction of ZnCoP/CdLa2S4 Schottky Heterojunctions for Enhancing Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2404030-0. doi: 10.3866/PKU.WHXB202404030

Metrics
  • PDF Downloads(6)
  • Abstract views(1032)
  • HTML views(151)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return