Citation: LING Yang, WU Jiang. Interaction mechanism between unburned carbon in coal-fired fly ash and arsenic in flue gas based on the density functional theory[J]. Journal of Fuel Chemistry and Technology, ;2020, 48(11): 1365-1377. shu

Interaction mechanism between unburned carbon in coal-fired fly ash and arsenic in flue gas based on the density functional theory

  • Corresponding author: WU Jiang, wjcfd2002@163.com
  • Received Date: 10 September 2020
    Revised Date: 21 October 2020

    Fund Project: National Natural Science Foundation of China 52076126The project was supported by National Key Research and Development Program (2018YFB0605103), National Natural Science Foundation of China (52076126), and Natural Science Foundation of Shanghai (18ZR1416200)National Key Research and Development Program 2018YFB0605103Natural Science Foundation of Shanghai 18ZR1416200

Figures(13)

  • The interaction mechanism between the unburned carbon in fly ash and the arsenic pollutants in flue gas such as As, AsO, AsO2 and As2O3 was studied based on the density functional theory. The results show that the elemental arsenic is preferentially adsorbed at the carbon bridge site, with an adsorption energy in the range (-5.95)-(-5.88) eV; the AsO molecule preferentially combines with the unburned carbon in a way that the arsenic and oxygen atoms are bound with the surface carbon atoms respectively, forming a most stable configuration with an adsorption energy of -7.87 eV. When AsO2 is dissociated on the unburned carbon surface and form an AsO molecule and a surface reactive oxygen species, the system is the most stable, possessing an adsorption energy of -10.65 eV. While once the two oxygen atoms in a trigonal bipyramid As2O3 molecule first collide with the unburned carbon surface, it will be dissociated to small molecules of AsO and AsO2, forming a covalent bond with surface carbon. The adsorption energy is significantly reduced to -10.64 eV, compared with the undissociated case. The unburned carbon in fly ash is easy to bind with AsO or AsO2 small molecules, which locally tends to form a special five-member ring structure. Compared with As, AsO and AsO2, the most toxic trivalent arsenic As2O3 is chemically stable and not easy to adsorb. Catalytic pyrolysis of As2O3 into small molecules of AsO and AsO2 is expected to be a feasible measure to control the arsenic pollution in coal-fired power plants flue gas.
  • 加载中
    1. [1]

      WANG C, LIU H, ZHANG Y, ZOU C, ANTHONY E J. Review of arsenic behavior during coal combustion: Volatilization, transformation, emission and removal technologies[J]. Prog Energy Combust Sci, 2018,68:1-28.  

    2. [2]

      YANG W, GAP Z, LIU X, DING X, YAN W. The adsorption characteristics of As2O3, Pb0, PbO and PbCl2 on single atom iron adsorbent with graphene-based substrates[J]. Chem Eng J, 2019,361:304-313.  

    3. [3]

      ZHOU Qiang, DUAN Yu-feng, LU Ping. Research progress on in-duct mercury removal by sorbent injection in power plant[J]. Chem Ind Eng Prog, 2018,37(11):4460-4467.  

    4. [4]

      SUN X, WU J, LI Q, LIU Q, QI Y, YOU L, JI Z, HE P, SHENG P, REN J, ZHANG W, LU J, ZHANG J. Fabrication of BiOIO3 with induced oxygen vacancies for efficient separation of the electron-hole pairs[J]. Appl Catal B: Environ, 2017,218:80-90.  

    5. [5]

      WANG J, ZHANG Y, WANG T, XU H, PAN W-P. Effect of modified fly ash injection on As, Se, and Pb emissions in coal-fired power plant[J]. Chem Eng J, 2020,380122561.  

    6. [6]

      WANG Yong-xing, HUANG Ya-ji, DONG Lu, YUAN Qi, DING Shou-yi, CHENG Hao-qiang, WANG Sheng, DUAN Yu-feng. 掺杂铁基氧化物吸附剂燃煤烟气脱汞实验研究[J]. J. Fuel Chem Technol, 2020,48(7):785-794.  

    7. [7]

      XU Ming-hou, WANG Wen-yu, WEN Chang, YU Dun-xi, LIU Xiao-wei. Research development of precipitation technology to accomplish the ultra-low emission from coal-fired power plants[J]. Proc CSEE, 2019,39(22):6627-6639.  

    8. [8]

      SHAH P, STREZOV V, PRINCE K, NELSON P F. Speciation of As, Cr, Se and Hg under coal fired power station conditions[J]. Fuel, 2008,87(10):1859-1869.  

    9. [9]

      TIAN C, GUPTA R, ZHAO Y, ZHANG J. Release behaviors of arsenic in fine particles generated from a typical high-arsenic coal at a high temperature[J]. Energy Fuels, 2016,30(8):6201-6209.  

    10. [10]

      SHEN F, LIU J, ZHANG Z, DAI J. On-line analysis and kinetic behavior of arsenic release during coal combustion and pyrolysis[J]. Environ Sci Technol, 2015,49(22):13716-13723.  

    11. [11]

      WINTER R M, MALLEPALLI R R, HELLEM K P, SZYDLO S W. Determination of As, Cd, Cr, and Pb species formed in a combustion environment[J]. Combust Sci Technol, 1994,101(1/6):45-58.  

    12. [12]

      YAN Ao, ZHANG Yue, WANG Chun-bo, BAI Tao, ZHAO Bin. Influence of O2 on the formation of As2O3 by homogeneous reaction with As and AsO in the coal-fired flue gas[J]. J Fuel Chem Technol, 2020,48(1):11-17.  

    13. [13]

      ZHANF H, KONG M, CAI Z, JIANG L, LIU Q, YANG J, REN S, LI J, DUAN M. Synergistic effect of arsenic and different potassium species on V2O5-WO3/TiO2 catalyst poisoning: Comparison of Cl-, SO42- and NO3- anions[J]. Catal Commun, 2020,144106069.  

    14. [14]

      YUN Duan, SONG Qiang, YAO Qiang. Mechanism and analysis of SCR catalyst deactivation[J]. Coal Convers, 2009,32(1):91-96.  

    15. [15]

      YUN Duan, DENG Si-li, SONG Qiang, YAO Qiang. Potassium deactivation and regeneration method of V2O5-WO3/TiO2 SCR catalyst[J]. Res Environ Sci, 2009,22(6):730-735.  

    16. [16]

      LU Q, PEI X Q, WU Y W, XU M X, LIU D J, ZHAO L. Deactivation mechanism of the commercial v2o5-moo3/tio2 selective catalytic reduction catalyst by arsenic poisoning in coal-fired power plants[J]. Energy Fuels, 2020,34(4):4865-4873.  

    17. [17]

      LIU C, ZHAO Q, WANG Y, SHI P, JIANG M. Hydrothermal synthesis of calcium sulfate whisker from flue gas desulfurization gypsum[J]. Chin J Chem Eng, 2016,24(11):1552-1560.  

    18. [18]

      YANG P, LI X, TONG Z J, LI Q S, HE B Y, WANG L L, GUO S H, XU Z M. Use of flue gas desulfurization gypsum for leaching Cd and Pb in reclaimed tidal flat soil[J]. Environ Sci Pollut Res Int, 2016,23(8):7840-7848.  

    19. [19]

      CAO Z, CAO Y D, ZHANG J S, SUN C B, LI X L. Preparation and characterization of high-strength calcium silicate boards from coal-fired industrial solid wastes[J]. Int J Min Met Mater, 2015,22(8):892-900.  

    20. [20]

      LIU Z, HAO Y, ZHANG J, WU S, PAN Y, ZHOU J, QIAN G. The characteristics of arsenic in Chinese coal-fired power plant flue gas desulphurisation gypsum[J]. Fuel, 2020,271117515.  

    21. [21]

      HE X, YAO B, XIA Y, HUANG H, GAN Y, ZHANG W. Coal fly ash derived zeolite for highly efficient removal of Ni2+ inwaste water[J]. Powder Technol, 2020,367:40-46.  

    22. [22]

      LI Y, DANG L, YANG H, LI J, HU H. Removal of elemental mercury in flue gas by Cu-Fe modified magnetosphere from coal combustion fly ash[J]. Fuel, 2020,271117668.  

    23. [23]

      CHEN Ming-ming, DUAN Yu-feng, LI Jia-chen, ZHOU Qiang, LIU Shuai, LIU Meng. Experimental study of mercury removal mechanism by bromine-modified fly ash[J]. Proc CSEE, 2017,37(11):3207-3215.  

    24. [24]

      LI S, GONG H, HU H, LIU H, HUANG Y, FU B, WANG L, YAO H. Re-using of coal-fired fly ash for arsenic vapors in-situ retention before SCR catalyst: Experiments and mechanisms[J]. Chemosphere, 2020,254126700.  

    25. [25]

      GUEDES A, VALENTIM B, PRIETO A C, SANZ A, FLORES D, NORONHA F. Characterization of fly ash from a power plant and surroundings by micro-Raman spectroscopy[J]. Int J Coal Geol, 2008,73(3/4):359-370.  

    26. [26]

      BHARDWAJ R, CHEN X, VIDIC R D. Impact of fly ash composition on mercury speciation in simulated flue gas[J]. J Air Waste Manag Assoc, 2009,59(11):1331-1338.  

    27. [27]

      HOWER J C, SENIOR C L, SUUBERG E M, HURT R H, WILCOX J L, OLSON E S. Mercury capture by native fly ash carbons in coal-fired power plants[J]. Prog Energy Combust Sci, 2010,36(4):510-529.  

    28. [28]

      HE P, ZHANG X, PENG X, JIANG X, WU J, CHEN N. Interaction of elemental mercury with defective carbonaceous cluster[J]. J Hazard Mater, 2015,300:289-297.  

    29. [29]

      HE P, WU J, JIANG X, PAN W, REN J. Effect of SO3 on elemental mercury adsorption on a carbonaceous surface[J]. Appl Surf Sci, 2012,258(22):8853-8860.  

    30. [30]

      QIN H, HE P, WU J, CHEN N. Theoretical study of hydrocarbon functional groups on elemental mercury adsorption on carbonaceous surface[J]. Chem Eng J, 2020,380122505.  

    31. [31]

      ZHU B, ZHANG J, JIANG C, CHENG B, YU J. First principle investigation of halogen-doped monolayer g-C3N4 photocatalyst[J]. Appl Catal B: Environ, 2017,207:27-34.  

    32. [32]

      LIU J, QU W, JOO S W, Chuguang Zheng. Effect of SO2 on mercury binding on carbonaceous surfaces[J]. Chem Eng J, 2012,184:163-167.  

    33. [33]

      JUNGSUTTIWONG S, WONGNONGWA Y, NAMUANGRUK S, KUNGWAN N, PROMARAK V, KUNASETH M. Density functional theory study of elemental mercury adsorption on boron doped graphene surface decorated by transition metals[J]. Appl Surf Sci, 2016,362:140-145.  

    34. [34]

      LIU X, GAO Z, HUANG H, YAN G, HUANG T, CHEN C, YANG W, DING X-L. Simultaneous catalytic oxidation of nitric oxide and elemental mercury by single-atom Pd/g-C3N4 catalyst: A DFT study[J]. Mol Catal, 2020,488110901.  

    35. [35]

      LING L, FAN M, WANG B, ZHANG R. Application of computational chemistry in understanding the mechanisms of mercury removal technologies: a review[J]. Energy Environ Sci, 2015,8(11):3109-3133.  

    36. [36]

      YANG Tao, LIU Jin-jia, WANG Yan-dan, WEN Xiao-dong, SHEN Bao-jian. Structures and energetics of CO2 adsorption on the Fe3O4 (111) surface[J]. J Fuel Chem Technol, 2018,46(9):1113-1120.  

  • 加载中
    1. [1]

      Hao XURuopeng LIPeixia YANGAnmin LIUJie BAI . Regulation mechanism of halogen axial coordination atoms on the oxygen reduction activity of Fe-N4 site: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 695-701. doi: 10.11862/CJIC.20240302

    2. [2]

      Kaifu Zhang Shan Gao Bin Yang . Application of Theoretical Calculation with Fun Practice in Raman Spectroscopy Experimental Teaching. University Chemistry, 2025, 40(3): 62-67. doi: 10.12461/PKU.DXHX202404045

    3. [3]

      Jie ZHAOSen LIUQikang YINXiaoqing LUZhaojie WANG . Theoretical calculation of selective adsorption and separation of CO2 by alkali metal modified naphthalene/naphthalenediyne. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 515-522. doi: 10.11862/CJIC.20230385

    4. [4]

      Jie ZHAOHuili ZHANGXiaoqing LUZhaojie WANG . Theoretical calculations of CO2 capture and separation by functional groups modified 2D covalent organic framework. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 275-283. doi: 10.11862/CJIC.20240213

    5. [5]

      Xiaochen Zhang Fei Yu Jie Ma . 多角度数理模拟在电容去离子中的前沿应用. Acta Physico-Chimica Sinica, 2024, 40(11): 2311026-. doi: 10.3866/PKU.WHXB202311026

    6. [6]

      Weina Wang Lixia Feng Fengyi Liu Wenliang Wang . Computational Chemistry Experiments in Facilitating the Study of Organic Reaction Mechanism: A Case Study of Electrophilic Addition of HCl to Asymmetric Alkenes. University Chemistry, 2025, 40(3): 206-214. doi: 10.12461/PKU.DXHX202407022

    7. [7]

      Meifeng Zhu Jin Cheng Kai Huang Cheng Lian Shouhong Xu Honglai Liu . Classical Density Functional Theory for Understanding Electrochemical Interface. University Chemistry, 2025, 40(3): 148-152. doi: 10.12461/PKU.DXHX202405166

    8. [8]

      Maitri BhattacharjeeRekha Boruah SmritiR. N. Dutta PurkayasthaWaldemar ManiukiewiczShubhamoy ChowdhuryDebasish MaitiTamanna Akhtar . Synthesis, structural characterization, bio-activity, and density functional theory calculation on Cu(Ⅱ) complexes with hydrazone-based Schiff base ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1409-1422. doi: 10.11862/CJIC.20240007

    9. [9]

      Zhengkun QINZicong PANHui TIANWanyi ZHANGMingxing SONG . A series of iridium(Ⅲ) complexes with fluorophenyl isoquinoline ligand and low-efficiency roll-off properties: A density functional theory study. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1235-1244. doi: 10.11862/CJIC.20240429

    10. [10]

      Yutao Lu Jing Wu . Rebirth from the Flames: Unveiling the “Chemical Secrets” of Fire Smoke. University Chemistry, 2024, 39(9): 208-213. doi: 10.12461/PKU.DXHX202401001

    11. [11]

      Xiangli Wang Yuanfu Deng . Teaching Design of Elemental Chemistry from the Perspective of “Curriculum Ideology and Politics”: Taking Arsenic as an Example. University Chemistry, 2024, 39(2): 270-279. doi: 10.3866/PKU.DXHX202308092

    12. [12]

      Mengyao Shi Kangle Su Qingming Lu Bin Zhang Xiaowen Xu . Determination of Potassium Content in Tobacco Stem Ash by Flame Atomic Absorption Spectroscopy. University Chemistry, 2024, 39(10): 255-260. doi: 10.12461/PKU.DXHX202404105

    13. [13]

      Yueguang Chen Wenqiang Sun . “Carbon” Adventures. University Chemistry, 2024, 39(9): 248-253. doi: 10.3866/PKU.DXHX202308074

    14. [14]

      Jizhou Liu Chenbin Ai Chenrui Hu Bei Cheng Jianjun Zhang . 六氯锡酸铵促进钙钛矿太阳能电池界面电子转移及其飞秒瞬态吸收光谱研究. Acta Physico-Chimica Sinica, 2024, 40(11): 2402006-. doi: 10.3866/PKU.WHXB202402006

    15. [15]

      Lei Shu Zimin Duan Yushen Kang Zijian Zhao Hong Wang Lihua Zhu Hui Xiong Nan Wang . An Exploration of the CO2-Involved Carbon Cycle World. University Chemistry, 2024, 39(5): 144-153. doi: 10.3866/PKU.DXHX202309084

    16. [16]

      Shu'e Song Xiaokui Wang Yongmei Liu Wanchun Zhu Hong Yuan Fuping Tian Yunshan Bai Yunchao Li Li Wang Zhongyun Wu Yuan Chun Jianrong Zhang Shuyong Zhang . Suggestions on Operating Specifications of Physical Chemistry Experiment: Measurement of Viscosity, Density and Optical Properties. University Chemistry, 2025, 40(5): 148-156. doi: 10.12461/PKU.DXHX202503026

    17. [17]

      Yi Yang Xin Zhou Miaoli Gu Bei Cheng Zhen Wu Jianjun Zhang . Femtosecond transient absorption spectroscopy investigation on ultrafast electron transfer in S-scheme ZnO/CdIn2S4 photocatalyst for H2O2 production and benzylamine oxidation. Acta Physico-Chimica Sinica, 2025, 41(6): 100064-. doi: 10.1016/j.actphy.2025.100064

    18. [18]

      Lei Shu Zhengqing Hao Kai Yan Hong Wang Lihua Zhu Fang Chen Nan Wang . Development of a Double-Carbon Related Experiment: Preparation, Characterization and Carbon-Capture Ability of Eggshell-Derived CaO. University Chemistry, 2024, 39(4): 149-156. doi: 10.3866/PKU.DXHX202310134

    19. [19]

      Yanhui XUEShaofei CHAOMan XUQiong WUFufa WUSufyan Javed Muhammad . Construction of high energy density hexagonal hole MXene aqueous supercapacitor by vacancy defect control strategy. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1640-1652. doi: 10.11862/CJIC.20240183

    20. [20]

      Qiqi Li Su Zhang Yuting Jiang Linna Zhu Nannan Guo Jing Zhang Yutong Li Tong Wei Zhuangjun Fan . 前驱体机械压实制备高密度活性炭及其致密电容储能性能. Acta Physico-Chimica Sinica, 2025, 41(3): 2406009-. doi: 10.3866/PKU.WHXB202406009

Metrics
  • PDF Downloads(4)
  • Abstract views(552)
  • HTML views(146)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return