Citation: FENG Xin-juan, MIN Xiao-jian, ZHENG Hua-an, FAN Ying-jie, LI Ya-bo, KONG Xiang-xi, WAN Chong, SUN Ming, MA Xiao-xun. Reaction (formaldehyde) separation and analysis of n-heptane extraction residue from heavy oil of medium and low temperature coal tar[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 15-26. shu

Reaction (formaldehyde) separation and analysis of n-heptane extraction residue from heavy oil of medium and low temperature coal tar

  • Corresponding author: SUN Ming, sunming@nwu.edu.cn MA Xiao-xun, maxym@nwu.edu.cn
  • Received Date: 22 August 2017
    Revised Date: 1 November 2017

    Fund Project: the Young Science and Technology Star Project of Shaanxi Province 2017KJXX-62the National Natural Science Foundation of China 21406178Project Academic Supported by Natural Science Basic Research Plan in Shaanxi Province of China 2017JQ2040Foundation of Outstanding Young Backbone Supporting Program of Northwest University 2015the National Natural Science Foundation of China 21536009The project was supported by the National Natural Science Foundation of China (21536009, 21406178), Science and Technology Plan Projects of Shanxi Province (2017ZDCXL-GY-10-03), the Young Science and Technology Star Project of Shaanxi Province (2017KJXX-62), Project Academic Supported by Natural Science Basic Research Plan in Shaanxi Province of China (2017JQ2040) and Foundation of Outstanding Young Backbone Supporting Program of Northwest University (2015)Science and Technology Plan Projects of Shanxi Province 2017ZDCXL-GY-10-03

Figures(7)

  • The n-heptane extraction residue (H-CT) from heavy medium and low temperature coal tar made in northern Shaanxi by n-heptane was reacted with formaldehyde. The product (P) was divided into n-heptane soluble (HS-P), n-heptane insoluble but toluene soluble (HI-TS-P), toluene insoluble but quinoline soluble (TI-QS-P) and quinoline insoluble (QI-P). The structure and composition of P were analyzed by means of GC-MS, TG-FTIR and FT-IR. The results show that P has more contents of TI-QS-P, oxygen atoms and a higher C/H atom ratio comparing with H-CT. The contents of HS-P, HI-TS-P, TI-QS-P and QI-P are 11.63%, 26.42%, 57.08% and 4.88%, respectively. HS-P and HI-TS-P contain mainly neutral components (mainly aromatics), few acidic components (mainly phenols), and some heteroatom compounds including O, N, S. TI-QS-P, with highly thermal stability, is rich in carbonyl groups, methylene bridge bonds and fused ring aromatic compounds. Besides, it also contains phenolic hydroxyl groups and aromatic ring substitutes.
  • 加载中
    1. [1]

      TANG W, FANG M X, WANG H Y, YU P L, WANG Q H, LUO Z Y. Mild hydrotreatment of low temperature coal tar distillate:Product composition[J]. Chem Eng J, 2014,236(2):529-537.  

    2. [2]

      GU Quan-wen. The method to improve coal tar recovery of low-temperature carbonization[J]. Shanxi Chem Ind, 2013,33(2):58-60.  

    3. [3]

      LONG H Y, SHI Q, PAN N, ZHANG Y H, CUI D C, CHUNG K H, ZHAO S Q, XU C M. Characterization of middle-temperature gasification coal tar. Part 2:Neutral fraction by extrography followed by gas chromatography-mass spectrometry and electrospray ionization coupled with Fourier transform ion cyclotron resonance mass spectrometry[J]. Energy Fuels, 2012,26(6):3424-3431. doi: 10.1021/ef2020167

    4. [4]

      NIU M L, SUN X H, GAO R, LI D, CUI W G, LI W H. Effect of dephenolization on low temperature coal tar hydrogenation to produce fuel oil[J]. Energy Fuels, 2016,30(12):10215-10221. doi: 10.1021/acs.energyfuels.6b01985

    5. [5]

      SEKI H, KUMATA F. Structural change of petroleum asphaltenes and resins by hydrodemetallization[J]. Energy Fuels, 2000,14(5):980-985. doi: 10.1021/ef000009m

    6. [6]

      SEKI H, YOSHIMOTO M. Deactivation of HDS catalyst in two-stage RDS process:Ⅱ. Effect of crude oil and deactivation mechanism[J]. Fuel Process Technol, 2001,69(3):229-238. doi: 10.1016/S0378-3820(00)00143-0

    7. [7]

      MORGAN T J, GEORGE A, ÁLVAREZ P, MILLAN M, HEROD A A, KANDIYOTI R. Characterization of molecular mass ranges of two coal tar distillate fractions (creosote and anthracene oils) and aromatic standards by LD-MS, GC-MS, probe-MS and size-exclusion chromatography[J]. Energy Fuels, 2008,22(5):3275-3292. doi: 10.1021/ef800333v

    8. [8]

      CRISTADORO A, KULKARNI S U, BURGESS W A, CERVO E G, RADER H J, MULLEN K, BRUCE D A, THIES M C. Structural characterization of the oligomeric constituents of petroleum pitches[J]. Carbon, 2009,47(10):2358-2370. doi: 10.1016/j.carbon.2009.04.027

    9. [9]

      BURGESS W A, PITTMAN J J, MARCUS R K, THIES M C. Structural identification of the monomeric constituents of petroleum pitch[J]. Energy Fuels, 2010,24(8):4301-4311. doi: 10.1021/ef1002556

    10. [10]

      GEORGE A, MORGAN T J, ALVAREZ P, MILLAN M, HEROD A A, KANDIYOTI R. Fractionation of a coal tar pitch by ultra-filtration, and characterization by size exclusion chromatography, UV-fluorescence and laser desorption-mass spectroscopy[J]. Fuel, 2010,89(10):2953-2970. doi: 10.1016/j.fuel.2010.04.011

    11. [11]

      SHI Q, PAN N, LONG H Y, CUI D C, GUO X F, LONG Y H, CHUNG K H, ZHAO S Q, XU C M, HSU C S. Characterization of middle-temperature gasification coal tar. Part 3:Molecular composition of acidic compounds[J]. Energy Fuels, 2012,27(1):108-117.  

    12. [12]

      SUN M, CHEN J, DAI X M, ZHAO X L, LIU K, MA X X. Controlled separation of low temperature coal tar based on solvent extraction-column chromatography[J]. Fuel Process Technol, 2015,136(0):41-49.  

    13. [13]

      YAO T, ZONG Z M, WEN Z, MUKASA R. Separation of arenols from a high-temperature coal tar[J]. Int J Min Sci Technol, 2012,22(2):243-244. doi: 10.1016/j.ijmst.2011.09.002

    14. [14]

      TAO L, ZHAO G B, QIAN J, QIN Y K. TG-FTIR characterization of pyrolysis of waste mixtures of paint and tar slag[J]. J Hazard Mater, 2010,175(1):754-761.  

    15. [15]

      GIROUX L, CHARLAND J P, MACPHEE J A. Application of thermogravimetric Fourier transform infrared spectroscopy (TG-FTIR) to the analysis of oxygen functional groups in coal[J]. Energy Fuels, 2006,20(5):1988-1996. doi: 10.1021/ef0600917

    16. [16]

      SUN M, MA X X, YAO Q X, WANG R C, MA Y X, FENG G, SHANG J X, XU L, YANG Y H. GC-MS and TG-FTIR study of petroleum ether extract and residue from low temperature coal tar[J]. Energy Fuels, 2011,25(3):1140-1145. doi: 10.1021/ef101610z

    17. [17]

      CRESPO J L, ARENILLAS A, VINA J A, GARCIA R, SNAPE C E, MOINELO S R. A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerisation[J]. Carbon, 2004,42(12):2762-2765.  

    18. [18]

      CRESPO J L, ARENILLAS A, VINA J A, GARCIA R, SNAPE C E, MOINELO S R. Effect of the polymerization with formaldehyde on the thermal reactivity of a low-temperature coal tar pitch[J]. Energy Fuels, 2005,19(2):374-381. doi: 10.1021/ef0498768

    19. [19]

      HANG Ji-hu, GAO Dong-mei, PENG Hao, WU Jin-li, ZHANG Fu-qiang. Study on composition of COPNA resin based on tar asphalt[J]. New Chem Mater, 2012,40(11):32-34. doi: 10.3969/j.issn.1006-3536.2012.11.012

    20. [20]

      SUN M, Ma X X, LV B, DAI X M, YAO Y, LIU Y Y, HE M, ZHAO X L. Gradient separation of -300℃ distillate from low-temperature coal tar based on formaldehyde reactions[J]. Fuel, 2015,160:16-23. doi: 10.1016/j.fuel.2015.07.029

    21. [21]

      SUN M, Ma X X, CAO W, DU P P, YANG Y H, XU L. Effect of polymerization with paraformaldehyde on thermal reactivity of >300℃ fraction from low temperature coal tar[J]. Thermochim Acta, 2012,538:48-54. doi: 10.1016/j.tca.2012.03.015

    22. [22]

      SONG H J, LIU G R, ZHANG J Z, WU J H. Pyrolysis characteristics and kinetics of low rank coals by TG-FTIR method[J]. Fuel Process Technol, 2017,156:454-460. doi: 10.1016/j.fuproc.2016.10.008

    23. [23]

      LIU J X, JIANG X M, SHEN J, ZHANG H. Pyrolysis of superfine pulverized coal. Part 1. Mechanisms of methane formation[J]. Energy Convers Manage, 2014,87:1027-1038. doi: 10.1016/j.enconman.2014.07.053

    24. [24]

      WANG K, DU F, WANG G D. The influence of methane and CO2 adsorption on the functional groups of coals:Insights from a Fourier transform infrared investigation[J]. J Nat Gas Sci Eng, 2017,45:358-367. doi: 10.1016/j.jngse.2017.06.003

    25. [25]

      ARENILLAS A, RUBIERA F, PIS J J, CUESTA M J, IGLESIAS M J, JIMENEZ A, SUAREZ-RUIZ I. Thermal behaviour during the pyrolysis of low rank perhydrous coals[J]. J Anal Appl Pyrolysis, 2003,68:371-385.  

    26. [26]

      LIEVENS C, YPERMAN J, CORNELISSEN T, CARLEER R. Study of the potential valorisation of heavy metal contaminated biomass via phytoremediation by fast pyrolysis:Part Ⅱ:Characterisation of the liquid and gaseous fraction as a function of the temperature[J]. Fuel, 2008,87(10):1906-1916.  

    27. [27]

      JIA Y B, HUANG J J, WANG Y. Effects of calcium oxide on the cracking of coal tar in the freeboard of a fluidized bed[J]. Energy Fuels, 2004,18(6):1625-1632. doi: 10.1021/ef034077v

    28. [28]

      JIANG H Y, WANG J G, WU S Q, YUAN Z Q, HU Z L, WU R M, LIU Q L. The pyrolysis mechanism of phenol formaldehyde resin[J]. Polym Degrad Stab, 2012,97(8):1527-1533. doi: 10.1016/j.polymdegradstab.2012.04.016

    29. [29]

      CAO G P, CHEN W J, LIU X B. Synthesis and thermal properties of the thermosetting resin based on cyano functionalized benzoxazine[J]. Polym Degrad Stab, 2008,93(3):739-744. doi: 10.1016/j.polymdegradstab.2007.10.002

    30. [30]

      GENG W H, NAKAJIMA T, TAKANASHI H, OHKI A. Analysis of carboxyl group in coal and coal aromaticity by Fourier transform infrared (FT-IR) spectrometry[J]. Fuel, 2009,88(1):139-144. doi: 10.1016/j.fuel.2008.07.027

  • 加载中
    1. [1]

      Zhanxiang Liu Chengshan Yuan Jie Han Shuanglian Cai Qihan Zhang Lin Wu Yuan Zheng Xingwen Sun Qingwen Liu Ying Xiong Guangao Yu Xin Du Houjin Li Jianrong Zhang Shuyong Zhang . Recommendations for Basic Operations and Standards for Organic Chemical Extraction and Washing Experiments. University Chemistry, 2025, 40(5): 55-65. doi: 10.12461/PKU.DXHX202410039

    2. [2]

      Laiying Zhang Yinghuan Wu Yazi Yu Yecheng Xu Haojie Zhang Weitai Wu . Innovation and Practice of Polymer Chemistry Experiment Teaching for Non-Polymer Major Students of Chemistry: Taking the Synthesis, Solution Property, Optical Performance and Application of Thermo-Sensitive Polymers as an Example. University Chemistry, 2024, 39(4): 213-220. doi: 10.3866/PKU.DXHX202310126

    3. [3]

      Lihui Jiang Wanrong Dong Hua Yang Yongqing Xia Hongjian Peng Jun Yuan Xiaoqian Hu Zihan Zeng Yingping Zou Yiming Luo . Study on Extraction of p-Hydroxyacetophenone. University Chemistry, 2024, 39(11): 259-268. doi: 10.12461/PKU.DXHX202402056

    4. [4]

      Zunxiang Zeng Yuling Hu Yufei Hu Hua Xiao . Analysis of Plant Essential Oils by Supercritical CO2Extraction with Gas Chromatography-Mass Spectrometry: An Instrumental Analysis Comprehensive Experiment Teaching Reform. University Chemistry, 2024, 39(3): 274-282. doi: 10.3866/PKU.DXHX202309069

    5. [5]

      Yanhui Zhong Ran Wang Zian Lin . Analysis of Halogenated Quinone Compounds in Environmental Water by Dispersive Solid-Phase Extraction with Liquid Chromatography-Triple Quadrupole Mass Spectrometry. University Chemistry, 2024, 39(11): 296-303. doi: 10.12461/PKU.DXHX202402017

    6. [6]

      Junjie Zhang Yue Wang Qiuhan Wu Ruquan Shen Han Liu Xinhua Duan . Preparation and Selective Separation of Lightweight Magnetic Molecularly Imprinted Polymers for Trace Tetracycline Detection in Milk. University Chemistry, 2024, 39(5): 251-257. doi: 10.3866/PKU.DXHX202311084

    7. [7]

      Fanpeng Meng Fei Zhao Jingkai Lin Jinsheng Zhao Huayang Zhang Shaobin Wang . 优化氮化碳纳米片/球形共轭聚合物S型异质结界面电场以促进析氢反应. Acta Physico-Chimica Sinica, 2025, 41(8): 100095-. doi: 10.1016/j.actphy.2025.100095

    8. [8]

      Bao Jia Yunzhe Ke Shiyue Sun Dongxue Yu Ying Liu Shuaishuai Ding . Innovative Experimental Teaching for the Preparation and Modification of Conductive Organic Polymer Thin Films in Undergraduate Courses. University Chemistry, 2024, 39(10): 271-282. doi: 10.12461/PKU.DXHX202404121

    9. [9]

      Xuefei Leng Yanshai Wang Hai Wang Shengyang Tao . The In-Depth integration of “Industry-University-Research” in the Exploration and Practice of “Comprehensive Training in Polymer Engineering”. University Chemistry, 2025, 40(4): 66-71. doi: 10.12461/PKU.DXHX202405105

    10. [10]

      Jiaxun Wu Mingde Li Li Dang . The R eaction of Metal Selenium Complexes with Olefins as a Tutorial Case Study for Analyzing Molecular Orbital Interaction Modes. University Chemistry, 2025, 40(3): 108-115. doi: 10.12461/PKU.DXHX202405098

    11. [11]

      Xiaoli Sun Xiang Wu Li Gan Wenming Wan . Barbier Polymerization: A New Teaching Case for Step-Growth Polymerization. University Chemistry, 2025, 40(4): 113-118. doi: 10.12461/PKU.DXHX202406102

    12. [12]

      Dongdong Yao JunweiGu Yi Yan Junliang Zhang Yaping Zheng . Teaching Phase Separation Mechanism in Polymer Blends Using Process Representation Teaching Method: A Teaching Design for Challenging Theoretical Concepts in “Polymer Structure and Properties” Course. University Chemistry, 2025, 40(4): 131-137. doi: 10.12461/PKU.DXHX202408125

    13. [13]

      Tianlong Zhang Rongling Zhang Hongsheng Tang Yan Li Hua Li . Online Monitoring and Mechanistic Analysis of 3,5-diamino-1,2,4-triazole (DAT) Synthesis via Raman Spectroscopy: A Recommendation for a Comprehensive Instrumental Analysis Experiment. University Chemistry, 2024, 39(6): 303-311. doi: 10.3866/PKU.DXHX202312006

    14. [14]

      Yan LIUJiaxin GUOSong YANGShixian XUYanyan YANGZhongliang YUXiaogang HAO . Exclusionary recovery of phosphate anions with low concentration from wastewater using a CoNi-layered double hydroxide/graphene electronically controlled separation film. Chinese Journal of Inorganic Chemistry, 2024, 40(9): 1775-1783. doi: 10.11862/CJIC.20240043

    15. [15]

      Zhongxin YUWei SONGYang LIUYuxue DINGFanhao MENGShuju WANGLixin YOU . Fluorescence sensing on chlortetracycline of a Zn-coordination polymer based on mixed ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(12): 2415-2421. doi: 10.11862/CJIC.20240304

    16. [16]

      Jiayu Gu Siqi Wang Jun Ling . Kinetics of Living Copolymerization: A Brief Discussion. University Chemistry, 2025, 40(4): 100-107. doi: 10.12461/PKU.DXHX202406012

    17. [17]

      Wenjian Zhang Mengxin Fan Wenwen Fei Wei Bai . Cultivation of Critical Thinking Ability: Based on RAFT Polymerization-Induced Self-Assembly. University Chemistry, 2025, 40(4): 108-112. doi: 10.12461/PKU.DXHX202406099

    18. [18]

      Jiajia Li Xiangyu Zhang Zhihan Yuan Zhengyang Qian Jian Zhu . 3D Printing Based on Photo-Induced Reversible Addition-Fragmentation Chain Transfer Polymerization. University Chemistry, 2024, 39(5): 11-19. doi: 10.3866/PKU.DXHX202309073

    19. [19]

      Zijian Zhao Yanxin Shi Shicheng Li Wenhong Ruan Fang Zhu Jijun Jiang . A New Exploration of the Preparation of Polyacrylic Acid by Free Radical Polymerization Based on the Concept of Green Chemistry. University Chemistry, 2024, 39(5): 315-324. doi: 10.3866/PKU.DXHX202311094

    20. [20]

      Xiao SANGQi LIUJianping LANG . Synthesis, structure, and fluorescence properties of Zn(Ⅱ) coordination polymers containing tetra-alkenylpyridine ligands. Chinese Journal of Inorganic Chemistry, 2024, 40(11): 2124-2132. doi: 10.11862/CJIC.20240158

Metrics
  • PDF Downloads(4)
  • Abstract views(2201)
  • HTML views(253)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return