Citation: LI Zeng-jie, HUANG Yu-hui, ZHU Ming, CHEN Xiao-rong, MEI Hua. Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran[J]. Journal of Fuel Chemistry and Technology, ;2018, 46(1): 54-58. shu

Catalytic performance of Ni/Al2O3 catalyst for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran

  • Corresponding author: ZHU Ming, mingzhu84@njtech.edu.cn
  • Received Date: 27 September 2017
    Revised Date: 27 November 2017

Figures(4)

  • Ni/Al2O3 catalyst with various NiO loading was prepared with impregnation method. The catalytic performance for hydrogenation of 2-methylfuran to 2-methyltetrahydrofuran was investigated in this work. The results indicated that with an increase of NiO contents (10%, 20%, 25%, 30% and 40%), 2-methylfuran conversion rate first increased and then droped to a low level. The selectivity of this hydrogenation reaction showed the same trend. It was mainly because that NiO can produce more active center on catalyst surface, which was good for hydrogenation reaction. However, overloading of NiO blocked the mesopores of supportive Al2O3, and thus reduce the reaction selectivity and conversion rate. In batch reactor, after optimization the hydrogenation selectivity rate can be improved under hydrogen partial pressure of 3 MPa, reaction temperature of 150℃ and stirring speed of 1000 r/min. As a result, 2-methyltetrahydrofuran selectivity of 97.1% and 2-methylfuran conversion rate of 99.4% can be achieved with 25% NiO loading.
  • 加载中
    1. [1]

      XIU S, SHAHBAZI A. Bio-oil production and upgrading research:A review[J]. Renewable Sustainable Energy Rev, 2012,16(7):4406-4414. doi: 10.1016/j.rser.2012.04.028

    2. [2]

      ZHENG H, ZHU Y, TENG B, BA Z, ZHANG C, XIANG H, LI Y. Towards understanding the reaction pathway in vapour phase hydrogenation of furfural to 2-methylfuran[J]. J Mol Catal A:Chem, 2006,246(1):18-23.  

    3. [3]

      RAGAN J A, ENDE D J, BRENEK S J, EISENBEIS S A, SINGER R A, TICKNER D L, TEIXEIRA J J, VANDERPLAS B C, WESTONET N. Safe execution of a large-scale ozonolysis:Preparation of the bisulfite adduct of 2-hydroxyindan-2-carboxaldehyde and its utility in a reductive amination[J]. Org Process Res Dev, 2003,7(2):155-160. doi: 10.1021/op0202235

    4. [4]

      YANG J, ZHENG H, ZHU Y, ZHAO G, ZHANG C, TENG B, XIANG H, LI Y. Effects of calcination temperature on performance of Cu-Zn-Al catalyst for synthesizing c-butyrolactone and 2-methylfuran through the coupling of dehydrogenation and hydrogenation[J]. Catal Commun, 2004,5(9):505-510. doi: 10.1016/j.catcom.2004.06.005

    5. [5]

      YAN K, WU G, LAFLEUR T, JARVIS C. Production, properties and catalytic hydrogenation of furfural to fuel additives and value-added chemicals[J]. Renewable Sustainable Energy Rev, 2014,38(5):663-676.  

    6. [6]

      NAKAGAWA Y, TAMURA M, TOMISHIGE K. Catalytic reduction of biomass-derived furanic compounds with hydrogen[J]. Acs Catal, 2013,3(12):2655-2668. doi: 10.1021/cs400616p

    7. [7]

      GUO Qing-quan, CHEN Huan-qin. Development on prepartion of levulinic acid and its derivatives[J]. Spec Petrochem, 2003,20(3):45-48.  

    8. [8]

      DENNEY D B, DENNEY D Z, GIGANTINO J J. Cyclodehydration of 1, 4-butanediols by pentaethoxyphosphorane[J]. J Org Chem, 1984,49(15):2831-2832. doi: 10.1021/jo00189a044

    9. [9]

      BISWAS P, LIN J H, KANG J, GULIANTS V V. Vapor phase hydrogenation of 2-methylfuran over noble and base metal catalysts[J]. Appl Catal A:Gen, 2014,475(5):379-385.  

    10. [10]

      SITTHISA S, SOOKNOI T, MA Y, BALBUENA P B, RESASCO D E. Kinetics and mechanism of hydrogenation of furfural on Cu/SiO2 catalysts[J]. J Catal, 2011,277(1):1-13. doi: 10.1016/j.jcat.2010.10.005

    11. [11]

      DONG F, ZHU Y, DING G, CUI J, LI X, LI Y. One-step conversion of furfural into 2-methyltetrahydrofuran under mild conditions[J]. ChemSusChem, 2015,8(9):1534-1537. doi: 10.1002/cssc.201500178

    12. [12]

      WANG Bao-wei, SHANG Yu-guang, DING Guo-zhong, WANG Hai-yang, WANG Er-dong, LI Zhen-hua, MA Xin-bin, QIN Shao-dong, SUN Qi. Ceria-alumina composite support on the sulfur-resistant methanation activity of Mo-based catalyst[J]. J Fuel Chem Technol, 2012,40(11):1390-1396. doi: 10.3969/j.issn.0253-2409.2012.11.018 

    13. [13]

      SUN Jiao, REN Guo-qing, HUANG Yu-hui, CHEN Xiao-rong, MEI Hua. Effect of calcination temperature on the catalytic performance of CuMgAl catalysts for furfural gas phese selective hydrogenation to furfuryl alcohol[J]. J Fuel Chem Technol, 2017,45(1):43-47.  

    14. [14]

      SEPEHRI S, REZAEI M. Preparation of highly active nickel catalysts supported on mesoporous nanocrystallineγ-Al2O3 for methane autothermal reforming[J]. Chem Eng Technol, 2015,38(9):1637-1645. doi: 10.1002/ceat.201400566

    15. [15]

      BSHISH A, YAAKOB Z, EBSHISH A, ALHASAN F H. Hydrogen production via ethanol steam reforming over Ni/Al2O3 catalysts:Effect of Ni loading[J]. J Energy Resour Technol, 2014,136(1):1-13.  

    16. [16]

      ZHAO A, YING W, ZHANG H, MA H, FANG D. Ni-Al2O3 catalysts prepared by solution combustion method for syngas methanation[J]. Catal Commun, 2012,17(5):34-38.  

    17. [17]

      BASF European Company. One step preparation of 2-mthyltetrahydrofuran from furfural in structured-bed with two catalysts:CN, 101558052A[P]. 2009-11-25.

    18. [18]

      MO Yong, WANG Gui-wu, CHEN Xi-wen. Liquid phase furfural hydrogenation to synthesize 2-methyltetrahydrofuran over Cu/Ni ultrafne mixed catalyst[J]. Fine Chem, 2013,30(7):821-824.  

  • 加载中
    1. [1]

      Hailian Tang Siyuan Chen Qiaoyun Liu Guoyi Bai Botao Qiao Fei Liu . Stabilized Rh/hydroxyapatite Catalyst for Furfuryl Alcohol Hydrogenation: Application of Oxidative Strong Metal-Support Interactions in Reducing Conditions. Acta Physico-Chimica Sinica, 2025, 41(4): 100036-. doi: 10.3866/PKU.WHXB202408004

    2. [2]

      Liuyun Chen Wenju Wang Tairong Lu Xuan Luo Xinling Xie Kelin Huang Shanli Qin Tongming Su Zuzeng Qin Hongbing Ji . Soft template-induced deep pore structure of Cu/Al2O3 for promoting plasma-catalyzed CO2 hydrogenation to DME. Acta Physico-Chimica Sinica, 2025, 41(6): 100054-. doi: 10.1016/j.actphy.2025.100054

    3. [3]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    4. [4]

      Lina Guo Ruizhe Li Chuang Sun Xiaoli Luo Yiqiu Shi Hong Yuan Shuxin Ouyang Tierui Zhang . 层状双金属氢氧化物的层间阴离子对衍生的Ni-Al2O3催化剂光热催化CO2甲烷化反应的影响. Acta Physico-Chimica Sinica, 2025, 41(1): 2309002-. doi: 10.3866/PKU.WHXB202309002

    5. [5]

      Aiyi Xin Jiawei Li Xinyang Ran Chuanjiang Fu Zhiguo Wang . Collaborative Science and Education Based Experimental Design in Organic Chemistry: A Case Study of the Nucleophilic Substitution Reaction of 2-Hydroxymethyl-4,6-Di-Tert-Butylphenol. University Chemistry, 2025, 40(5): 366-375. doi: 10.12461/PKU.DXHX202407031

    6. [6]

      Wei Zhong Dan Zheng Yuanxin Ou Aiyun Meng Yaorong Su . K原子掺杂高度面间结晶的g-C3N4光催化剂及其高效H2O2光合成. Acta Physico-Chimica Sinica, 2024, 40(11): 2406005-. doi: 10.3866/PKU.WHXB202406005

    7. [7]

      Xi YANGChunxiang CHANGYingpeng XIEYang LIYuhui CHENBorao WANGLudong YIZhonghao HAN . Co-catalyst Ni3N supported Al-doped SrTiO3: Synthesis and application to hydrogen evolution from photocatalytic water splitting. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 440-452. doi: 10.11862/CJIC.20240371

    8. [8]

      Anqiu LIULong LINDezhi ZHANGJunyu LEIKefeng WANGWei ZHANGJunpeng ZHUANGHaijun HAO . Synthesis, structures, and catalytic activity of aluminum and zinc complexes chelated by 2-((2,6-dimethylphenyl)amino)ethanolate. Chinese Journal of Inorganic Chemistry, 2024, 40(4): 791-798. doi: 10.11862/CJIC.20230424

    9. [9]

      Kangmin WangLiqiu WanJingyu WangChunlin ZhouKe YangLiang ZhouBijin Li . Multifunctional 2-(2′-hydroxyphenyl)benzoxazoles: Ready synthesis, mechanochromism, fluorescence imaging, and OLEDs. Chinese Chemical Letters, 2024, 35(10): 109554-. doi: 10.1016/j.cclet.2024.109554

    10. [10]

      Xiaofang Li Zhigang Wang . Modulating dz2-orbital occupancy of Au cocatalysts for enhanced photocatalytic H2O2 production. Acta Physico-Chimica Sinica, 2025, 41(7): 100080-. doi: 10.1016/j.actphy.2025.100080

    11. [11]

      Ruolin CHENGHaoran WANGJing RENYingying MAHuagen LIANG . Efficient photocatalytic CO2 cycloaddition over W18O49/NH2-UiO-66 composite catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 523-532. doi: 10.11862/CJIC.20230349

    12. [12]

      Yi YANGShuang WANGWendan WANGLimiao CHEN . Photocatalytic CO2 reduction performance of Z-scheme Ag-Cu2O/BiVO4 photocatalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 895-906. doi: 10.11862/CJIC.20230434

    13. [13]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    14. [14]

      Yuexiang LiuXiangqiao YangTong LinGuantian YangXiaoyong XuBubing ZengZhong LiWeiping ZhuXuhong Qian . Efficient continuous synthesis of 2-[3-(trifluoromethyl)phenyl]malonic acid, a key intermediate of Triflumezopyrim, coupling with esterification-condensation-hydrolysis. Chinese Chemical Letters, 2025, 36(1): 109747-. doi: 10.1016/j.cclet.2024.109747

    15. [15]

      Rui HUANGShengjie LIUQingyuan WUNanfeng ZHENG . Enhanced selectivity of catalytic hydrogenation of halogenated nitroaromatics by interfacial effects. Chinese Journal of Inorganic Chemistry, 2025, 41(1): 201-212. doi: 10.11862/CJIC.20240356

    16. [16]

      Hongyi LIAimin WULiuyang ZHAOXinpeng LIUFengqin CHENAikui LIHao HUANG . Effect of Y(PO3)3 double-coating modification on the electrochemical properties of Li[Ni0.8Co0.15Al0.05]O2. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1320-1328. doi: 10.11862/CJIC.20230480

    17. [17]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    18. [18]

      Yue LiMinghao FanConghui WangYanxun LiXiang YuJun DingLei YanLele QiuYongcai ZhangLonglu Wang . 3D layer-by-layer amorphous MoSx assembled from [Mo3S13]2- clusters for efficient removal of tetracycline: Synergy of adsorption and photo-assisted PMS activation. Chinese Chemical Letters, 2024, 35(9): 109764-. doi: 10.1016/j.cclet.2024.109764

    19. [19]

      Yu Wang Haiyang Shi Zihan Chen Feng Chen Ping Wang Xuefei Wang . 具有富电子Ptδ-壳层的空心AgPt@Pt核壳催化剂:提升光催化H2O2生成选择性与活性. Acta Physico-Chimica Sinica, 2025, 41(7): 100081-. doi: 10.1016/j.actphy.2025.100081

    20. [20]

      Ran Yu Chen Hu Ruili Guo Ruonan Liu Lixing Xia Cenyu Yang Jianglan Shui . 杂多酸H3PW12O40高效催化MgH2储氢. Acta Physico-Chimica Sinica, 2025, 41(1): 2308032-. doi: 10.3866/PKU.WHXB202308032

Metrics
  • PDF Downloads(7)
  • Abstract views(1887)
  • HTML views(259)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return