Citation: Yingying Wu, Yongsheng Wang, Xinping Zhang, Tian Qiu, Zhengkang Duan. Preparation of TS-1 Molecular Sieve and Its Research Progress in Cyclohexanone Ammoximation Process[J]. Chemistry, ;2021, 84(4): 359-364. shu

Preparation of TS-1 Molecular Sieve and Its Research Progress in Cyclohexanone Ammoximation Process

  • Corresponding author: Zhengkang Duan, dzk0607@163.com
  • Received Date: 9 October 2020
    Accepted Date: 21 December 2020

Figures(2)

  • Cyclohexanone oxime, an important organic intermediate, is widely applied in synthetic fiber, industrial manufacturing, medicine, and daily necessities. Many methods for the synthetic of cyclohexanone oxime are available, in which the cyclohexanone ammoximation reaction has attracted extensive attention because of the simple process, mild conditions, and no by-products. In this review, the research progress in the preparation of cyclohexanone oxime catalyst and continuous process are summarized. Although the TS-1 catalyst has made a great success at present, there are still some disadvantages such as high cost of the catalyst, difficulty in separating the reaction liquid from the catalyst, and blockage of the catalyst pores by the reaction liquid, resulting in catalyst deactivation. In addition, the research priorities for the development of efficient, green and stable TS-1 catalysts and the future research directions of the continuous cyclohexanone oxime process are prospected.
  • 加载中
    1. [1]

      Rangarajan S. Chem. Business, 2011, 25(7): 39.

    2. [2]

       

    3. [3]

       

    4. [4]

       

    5. [5]

      Fan W, Duan R G, Yokoi T, et al. J. Am. Chem. Soc., 2008, 130(31): 10150~10164. 

    6. [6]

      Baduraig A, Odedairo T, Al-Khattaf S. Topics Catal., 2010, 53(19-20): 1446~1456. 

    7. [7]

      Shi T Y, Li Y Y, Chen Q Y, et al. Power Technol., 2020, 375: 533~538. 

    8. [8]

       

    9. [9]

      Zhang S, Zhao H, Wang X, et al. React. Kinet. Mech. Cat., 2019, 127(5): 787~801.

    10. [10]

      Hu Y, Dong C, Wang T, et al. Luo G S. Chem. Eng. Sci., 2018, 60(7): 187~198.

    11. [11]

      Najar H, Mongia S Z, Ghorbel A. React. Kinet. Mech. Cat., 2010, 100(2): 385~398.

    12. [12]

      Tsai S T, Chao P Y, Tsai T C, et al. Catal. Today, 2009, 148(1): 174~178.

    13. [13]

      Li H, Lei Q, Zhang X, et al. ChemCatChem, 2011, 3(1): 143~145. 

    14. [14]

       

    15. [15]

       

    16. [16]

      Chu C Q, Zhao H T, Qi Y Y, et al. J. Mol. Model., 2013, 19(6): 2217~2224. 

    17. [17]

       

    18. [18]

      Moncada J, Gursel I V, Worrell E, et al. Biofuel. Bioprod. Biorefin., 2018, 12(4): 1~24.

    19. [19]

      Abdullahi T, Harun Z, Othman M H D. Adv. Powder Technol., 2017, 28(8): 1~12.

    20. [20]

      Taramasso M, Perego G, Notari B. USP: 4410501, 1983.

    21. [21]

      Ye X J, Cui Y J, Qiu X, et al. Appl. Catal. B, 2014, 152-153(1): 383~389.

    22. [22]

      Saikia L, Baruah J M, Thakur A J. Org. Med. Chem. Lett., 2011, 1(1): 1~12. 

    23. [23]

      Wang M, Zhou J C, Mao G, et al. Ind. Eng. Chem. Res., 2012, 51(39): 12730~12738. 

    24. [24]

       

    25. [25]

      Thangaraj A, Sivasanker S. J. Catal., 1991, 131(2): 394~400. 

    26. [26]

       

    27. [27]

       

    28. [28]

       

    29. [29]

      Deng X J, Wang Y, Shen L, et al. Ind. Eng. Chem. Res., 2013, 52(3): 1190~1196. 

    30. [30]

       

    31. [31]

      Wei H J, Zhao T, Liu Y Q, et al. RSC Adv., 2013, 3(43): 20811~20815. 

    32. [32]

       

    33. [33]

      Huang D G, Zhang X, Liu T W, et al. Ind. Eng. Chem. Res., 2013, 52(10): 3762~3772. 

    34. [34]

       

    35. [35]

      Xue Y, Zuo G, Wen Y, et al. RSC Adv., 2019, 9(5): 2386~2394. 

    36. [36]

      Wu P, Tatsumi T, Komatsu T, et al. J. Phys. Chem. B, 2001, 105(15): 2897~2905. 

    37. [37]

      Zhao S, Xie W, Yang J, et al. Appl. Catal. A, 2011, 394(2): 1~8.

    38. [38]

       

    39. [39]

       

    40. [40]

      Lin J, Xin F, Yang L, et al. Catal. Commun., 2014, 45(5): 104~108.

    41. [41]

      Chen Y P, Cheng F H, Yao P T. USP: 9434683, 2016-09-06.

    42. [42]

       

    43. [43]

       

    44. [44]

       

    45. [45]

      Niu C C, Liu M, Gao X, et al. ACS Omega, 2019, 4(2): 4397~4404. 

    46. [46]

       

    47. [47]

       

    48. [48]

       

    49. [49]

       

    50. [50]

       

    51. [51]

      Sun R, Xin F, Yang L B. Ind. Eng. Chem. Res., 2015, 54(7): 2254~2258.

  • 加载中
    1. [1]

      Peng YUELiyao SHIJinglei CUIHuirong ZHANGYanxia GUO . Effects of Ce and Mn promoters on the selective oxidation of ammonia over V2O5/TiO2 catalyst. Chinese Journal of Inorganic Chemistry, 2025, 41(2): 293-307. doi: 10.11862/CJIC.20240210

    2. [2]

      Bing WEIJianfan ZHANGZhe CHEN . Research progress in fine tuning of bimetallic nanocatalysts for electrocatalytic carbon dioxide reduction. Chinese Journal of Inorganic Chemistry, 2025, 41(3): 425-439. doi: 10.11862/CJIC.20240201

    3. [3]

      Wentao XuXuyan MoYang ZhouZuxian WengKunling MoYanhua WuXinlin JiangDan LiTangqi LanHuan WenFuqin ZhengYoujun FanWei Chen . Bimetal Leaching Induced Reconstruction of Water Oxidation Electrocatalyst for Enhanced Activity and Stability. Acta Physico-Chimica Sinica, 2024, 40(8): 2308003-0. doi: 10.3866/PKU.WHXB202308003

    4. [4]

      Yongwei ZHANGChuang ZHUWenbin WUYongyong MAHeng YANG . Efficient hydrogen evolution reaction activity induced by ZnSe@nitrogen doped porous carbon heterojunction. Chinese Journal of Inorganic Chemistry, 2025, 41(4): 650-660. doi: 10.11862/CJIC.20240386

    5. [5]

      Zhaoyu WenNa HanYanguang Li . Recent Progress towards the Production of H2O2 by Electrochemical Two-Electron Oxygen Reduction Reaction. Acta Physico-Chimica Sinica, 2024, 40(2): 2304001-0. doi: 10.3866/PKU.WHXB202304001

    6. [6]

      Yufang GAONan HOUYaning LIANGNing LIYanting ZHANGZelong LIXiaofeng LI . Nano-thin layer MCM-22 zeolite: Synthesis and catalytic properties of trimethylbenzene isomerization reaction. Chinese Journal of Inorganic Chemistry, 2024, 40(6): 1079-1087. doi: 10.11862/CJIC.20240036

    7. [7]

      Jun LIHuipeng LIHua ZHAOQinlong LIU . Preparation and photocatalytic performance of AgNi bimetallic modified polyhedral bismuth vanadate. Chinese Journal of Inorganic Chemistry, 2024, 40(3): 601-612. doi: 10.11862/CJIC.20230401

    8. [8]

      Fangxuan LiuZiyan LiuGuowei ZhouTingting GaoWenyu LiuBin Sun . 中空结构光催化剂. Acta Physico-Chimica Sinica, 2025, 41(7): 100071-0. doi: 10.1016/j.actphy.2025.100071

    9. [9]

      Jingzhao ChengShiyu GaoBei ChengKai YangWang WangShaowen Cao . Construction of 4-Amino-1H-imidazole-5-carbonitrile Modified Carbon Nitride-Based Donor-Acceptor Photocatalyst for Efficient Photocatalytic Hydrogen Evolution. Acta Physico-Chimica Sinica, 2024, 40(11): 2406026-0. doi: 10.3866/PKU.WHXB202406026

    10. [10]

      Wenlong LIXinyu JIAJie LINGMengdan MAAnning ZHOU . Photothermal catalytic CO2 hydrogenation over a Mg-doped In2O3-x catalyst. Chinese Journal of Inorganic Chemistry, 2024, 40(5): 919-929. doi: 10.11862/CJIC.20230421

    11. [11]

      Kun WANGWenrui LIUPeng JIANGYuhang SONGLihua CHENZhao DENG . Hierarchical hollow structured BiOBr-Pt catalysts for photocatalytic CO2 reduction. Chinese Journal of Inorganic Chemistry, 2024, 40(7): 1270-1278. doi: 10.11862/CJIC.20240037

    12. [12]

      Xuejie WangGuoqing CuiCongkai WangYang YangGuiyuan JiangChunming Xu . Research Progress on Carbon-based Catalysts for Catalytic Dehydrogenation of Liquid Organic Hydrogen Carriers. Acta Physico-Chimica Sinica, 2025, 41(5): 100044-0. doi: 10.1016/j.actphy.2024.100044

    13. [13]

      Xueting FengZiang ShangRong QinYunhu Han . Advances in Single-Atom Catalysts for Electrocatalytic CO2 Reduction. Acta Physico-Chimica Sinica, 2024, 40(4): 2305005-0. doi: 10.3866/PKU.WHXB202305005

    14. [14]

      Dan Li Hui Xin Xiaofeng Yi . Comprehensive Experimental Design on Ni-based Catalyst for Biofuel Production. University Chemistry, 2024, 39(8): 204-211. doi: 10.3866/PKU.DXHX202312046

    15. [15]

      Haodong JINQingqing LIUChaoyang SHIDanyang WEIJie YUXuhui XUMingli XU . NiCu/ZnO heterostructure photothermal electrocatalyst for efficient hydrogen evolution reaction. Chinese Journal of Inorganic Chemistry, 2025, 41(6): 1068-1082. doi: 10.11862/CJIC.20250048

    16. [16]

      Lele FengXueying BaiJifeng PangHongchen CaoXiaoyan LiuWenhao LuoXiaofeng YangPengfei WuMingyuan Zheng . Single-atom Pd boosted Cu catalysts for ethanol dehydrogenation. Acta Physico-Chimica Sinica, 2025, 41(9): 100100-0. doi: 10.1016/j.actphy.2025.100100

    17. [17]

      Huiwei DingBo PengZhihao WangQiaofeng Han . Advances in Metal or Nonmetal Modification of Bismuth-Based Photocatalysts. Acta Physico-Chimica Sinica, 2024, 40(4): 2305048-0. doi: 10.3866/PKU.WHXB202305048

    18. [18]

      Yushan CaiFang-Xing Xiao . Revisiting MXenes-based Photocatalysis Landscape: Progress, Challenges, and Future Perspectives. Acta Physico-Chimica Sinica, 2024, 40(8): 2306048-0. doi: 10.3866/PKU.WHXB202306048

    19. [19]

      Juntao YanLiang Wei . 2D S-Scheme Heterojunction Photocatalyst. Acta Physico-Chimica Sinica, 2024, 40(10): 2312024-0. doi: 10.3866/PKU.WHXB202312024

    20. [20]

      Yuanyin CuiJinfeng ZhangHailiang ChuLixian SunKai Dai . Rational Design of Bismuth Based Photocatalysts for Solar Energy Conversion. Acta Physico-Chimica Sinica, 2024, 40(12): 2405016-0. doi: 10.3866/PKU.WHXB202405016

Metrics
  • PDF Downloads(31)
  • Abstract views(1318)
  • HTML views(364)

通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索
Address:Zhongguancun North First Street 2,100190 Beijing, PR China Tel: +86-010-82449177-888
Powered By info@rhhz.net

/

DownLoad:  Full-Size Img  PowerPoint
Return